Invest-currency.ru

Как обезопасить себя в кризис?
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Допустимым решением задачи линейного программирования называется

Математические модели задач линейного программирования

Составляющие математической модели

Основой для решения экономических задач являются математические модели.

Математической моделью задачи называется совокупность математических соотношений, описывающих суть задачи.

Составление математической модели включает:

  • выбор переменных задачи
  • составление системы ограничений
  • выбор целевой функции

Переменными задачи называются величины Х1, Х2, Хn, которые полностью характеризуют экономический процесс. Обычно их записывают в виде вектора: X=(X1, X2. Xn).

Системой ограничений задачи называют совокупность уравнений и неравенств, описывающих ограниченность ресурсов в рассматриваемой задаче.

Целевой функцией задачи называют функцию переменных задачи, которая характеризует качество выполнения задачи и экстремум которой требуется найти.

В общем случае задача линейного программирования может быть записана в таком виде:

Данная запись означает следующее: найти экстремум целевой функции (1) и соответствующие ему переменные X=(X1, X2. Xn) при условии, что эти переменные удовлетворяют системе ограничений (2) и условиям неотрицательности (3).

Допустимым решением (планом) задачи линейного программирования называется любой n-мерный вектор X=(X1, X2. Xn), удовлетворяющий системе ограничений и условиям неотрицательности.

Множество допустимых решений (планов) задачи образует область допустимых решений (ОДР).

Оптимальным решением (планом) задачи линейного программирования называется такое допустимое решение (план) задачи, при котором целевая функция достигает экстремума.

Пример составления математической модели

Задача использования ресурсов (сырья)

Условие: Для изготовления n видов продукции используется m видов ресурсов. Составить математическую модель.

Известны:

  • bi ( i = 1,2,3. m) — запасы каждого i-го вида ресурса;
  • aij ( i = 1,2,3. m; j=1,2,3. n) — затраты каждого i-го вида ресурса на производство единицы объема j-го вида продукции;
  • cj ( j = 1,2,3. n) — прибыль от реализации единицы объема j-го вида продукции.

Требуется составить план производства продукции, который обеспечивает максимум прибыли при заданных ограничениях на ресурсы (сырье).

Решение:

Введем вектор переменных X=(X1, X2. Xn), где xj ( j = 1,2. n) — объем производства j-го вида продукции.

Затраты i-го вида ресурса на изготовление данного объема xj продукции равны aijxj, поэтому ограничение на использование ресурсов на производство всех видов продукции имеет вид:
Прибыль от реализации j-го вида продукции равна cjxj , поэтому целевая функция равна:

Ответ — Математическая модель имеет вид:

Каноническая форма задачи линейного программирования

В общем случае задача линейного программирования записывается так, что ограничениями являются как уравнения, так и неравенства, а переменные могут быть как неотрицательными, так и произвольно изменяющимися.

В том случае, когда все ограничения являются уравнениями и все переменные удовлетворяют условию неотрицательности, задачу линейного программирования называют канонической.

Она может быть представлена в координатной, векторной и матричной записи.

Каноническая задача линейного программирования в координатной записи имеет вид:

Каноническая задача линейного программирования в матричной записи имеет вид:

  • А — матрица коэффициентов системы уравнений
  • Х — матрица-столбец переменных задачи
  • Ао — матрица-столбец правых частей системы ограничений

Нередко используются задачи линейного программирования, называемые симметричными, которые в матричной записи имеют вид:

Приведение общей задачи линейного программирования к канонической форме

В большинстве методов решения задач линейного программирования предполагается, что система ограничений состоит из уравнений и естественных условий неотрицательности переменных. Однако при составлении моделей экономических задач ограничения в основном формируются в виде системы неравенств, поэтому необходимо уметь переходить от системы неравенств к системе уравнений.

Это может быть сделано следующим образом:

Возьмем линейное неравенство a1x1+a2x2+. +anxn≤b и прибавим к его левой части некоторую величину xn+1 , такую, что неравенство превратилось в равенство a1x1+a2x2+. +anxn+xn+1=b. При этом данная величина xn+1 является неотрицательной.

Рассмотрим все на примере.

Привести к каноническому виду задачу линейного программирования:

Решение:
Перейдем к задаче на отыскивание максимума целевой функции.
Для этого изменим знаки коэффициентов целевой функции.
Для превращения второго и третьего неравенств системы ограничений в уравнения введем неотрицательные дополнительные переменные x4 x5 (на математической модели эта операция отмечена буквой Д).
Переменная х4 вводится в левую часть второго неравенства со знаком «+», так как неравенство имеет вид «≤».
Переменная x5 вводится в левую часть третьего неравенства со знаком «-«, так как неравенство имеет вид «≥».
В целевую функцию переменные x4 x5 вводятся с коэффициентом. равным нулю.
Записываем задачу в каноническом виде:

Общая задача линейного программирования. Основные теоремы. Многоугольник решений

Структура оптимизационных задач.

Оптимизационные задачи (ОЗ) решаются с помощью оптимизационных моделей (ОМ) методами математического программирования.

Структура оптимизационной модели состоит из целевой функции, области допустимых решений и системы ограничений, определяющих эту область. Целевая функция в самом общем виде, в свою очередь, также состоит из трех элементов:

o управляемых переменных;

o неуправляемых переменных;

o формы функции (вида зависимости между ними).

Область допустимых решений это область, в пределах которой осуществляется выбор решений. В экономических задачах она ограничена наличными ресурсами, условиями, которые записываются в виде системы ограничений, состоящей из уравнений и неравенств.

Если система ограничений несовместима, то область допустимых решений является пустой. Ограничения подразделяются:

а) на линейные ( I и II ) и нелинейные ( III и IV )

б) детерминированные ( А , В ) и стохастические (группы кривых С i )

Стохастические ограничения являются возможными, вероятностными, случайными.

ОЗ решаются методами математического программирования, которые подразделяются:

o на линейное программирование;

o нелинейное программирование;

o динамическое программирование;

o целочисленное программирование;

o выпуклое программирование;

o исследование операций;

o геометрическое программирование и др.

Постановка задачи. Математическая модель ЗЛП.(задача линейного программирования)

Линейное программирование – направление математики, изучающее методы решения экстремальных задач, которые характеризуются линейной зависимостью между переменными и линейным критерием оптимальности.

К математическим задачам линейного программирования относят исследования конкретных производственно-хозяйственных ситуаций, которые в том или ином виде интерпретируются как задачи об оптимальном использовании ограниченных ресурсов.

Круг задач, решаемых при помощи методов линейного программирования достаточно широк. Это, например:

· задача об оптимальном использовании ресурсов при производственном планировании;

Читать еще:  Идея структурного программирования

· задача о смесях (планирование состава продукции);

· задача о нахождении оптимальной комбинации различных видов продукции для хранения на складах (управление товарно-материальными запасами или «задача о рюкзаке»);

· транспортные задачи (анализ размещения предприятия, перемещение грузов).

Задача линейного программирования (стандартная, каноническая и общая) и ее геометрическая интерпретация.

Задачи

Общей (стандартной) задачей линейного программирования называется задача нахождения минимума линейной целевой функции (линейной формы) вида [3] :

Задача, в которой фигурируют ограничения в форме неравенств, называется основной задачей линейного программирования (ОЗЛП)

,

.

Задача линейного программирования будет иметь канонический вид, если в основной задаче вместо первой системы неравенств имеет место система уравнений с ограничениями в форме равенства [4] :

,

Основную задачу можно свести к канонической путём введения дополнительных переменных.

Задачи линейного программирования наиболее общего вида (задачи со смешанными ограничениями: равенствами и неравенствами, наличием переменных, свободных от ограничений) могут быть приведены к эквивалентным (имеющим то же множество решений) заменами переменных и заменой равенств на пару неравенств [5] .

Легко заметить, что задачу нахождения максимума можно заменить задачей нахождения минимума, взяв коэффициенты с обратным знаком.

Общая задача линейного программирования. Основные теоремы. Многоугольник решений.

1. Общая задача линейного программирования

1. Формулировка задачи.

Даны линейная функция

и система линейных ограничений

где а ij , Ь j и С j — заданные постоянные величины

Найти такие неотрицательные значения х 1 , х 2 , …, х n , которые удовлетворяют системе ограничений (1.2) и доставляют линейной функции (1.1)минимальное значение

Общая задача имеет несколько форм записи

Векторная форма записи.Минимизировать линейную функцию Z = СХ при ограничениях

где С = (с 1 , с 2 , …, с N ); Х = (х 1 , х 2 , …, х N ); СХ – скалярное произведение; векторы

состоят соответственно из коэффициентов при неизвестных и свободных членах

Матричная форма записи. Минимизировать линейную функцию, Z = СХ при ограничениях АХ = А , Х 0, где С = (с 1 , с 2 , …, с N ) – матрица-cтрока; А = (а ij ) – матрица системы;

Х – матрица-столбец, А — матрица-столбец

Запись с помощью знаков суммирования.Минимизировать линейную функцию Z = С j х jпри ограничениях

0пределение 1. Планом или допустимым решением задачи линейного программирования называется Х = (х 1 , х 2 , …, х N ), удовлетворяющий условиям (1.2) и (1.3)

0пределение 2. План Х = (х 1 , х 2 , …, х N ) называется опорным, если векторы А (i = 1, 2, …, N), входящие в разложение (1.4) с положительными коэффициентами х , являются линейно независимыми

Так как векторы А являются N-мерными, то из определения опорного плана следует, что число его положительных компонент не может превышать М

0пределение 3. Опорный план называется невырожденным, если он содержит М положительных компонент, в противном случае опорный план называется вырожденным

0пределение 4 . Оптимальным планом или оптимальным решением задачи линейного программирования называется план, доставляющий наименьшее (наибольшее) значение линейной функции

В дальнейшем рассмотрено решение задач линейного программирования, связанных с на
хождением минимального значения линейной функции. Там, где необходимо найти максимальное значение линейной функции, достаточно заменить на противоположный знак линейной функции и найти минимальное значение последней функции. Заменяя на противоположный знак полученного минимального значения, определяем максимальное значение исходной линейной функции

Для обоснования методов решения задач линейного программирования сформулируем ряд важнейших теорем, подтверждая их справедливость дальнейшими геометрическими построениями и опуская аналитические доказательства этих теорем. Вначале дадим некоторые определения.

Определение 1. Множество точек называется выпуклым, если вместе с его любыми двумя точками ему принадлежит и весь отрезок, соединяющий их.

На рис. 2.1 изображено выпуклое множество (выпуклый многоугольник), а на рис. 2.2 — невыпуклое.

Определение 2. Пересечение конечного числа выпуклых множеств также выпуклое множество.

Определение 3.Точка выпуклого множества называется угловой (или крайней), если через неё нельзя провести ни одного отрезка, состоящего только из точек данного множества и для которого она была бы внутренней.
Для выпуклого многоугольника угловыми точками являются все его вершины. В пространстве выпуклое множество с конечным числом угловых точек называется выпуклым многогранником.

Утверждение 1. Множеством решений системы m линейных неравенств с n переменными является выпуклый многогранник в n-мерном пространстве(исключая случай, когда система несовместна).

Теорема 1. Множество всех допустимых решений системы ограничений задачи линейного программирования является выпуклым.
Ранее говорилось, что ограничениями любой задачи линейного программирования являются либо система линейных уравнений, либо система линейных неравенств. Совокупность решений таких систем при условии их совместности, образует выпуклые множества с конечным числом угловых точек. В частном случае, когда в систему ограничений — неравенств входят только две переменные x1 и x2 это множество можно изобразить на плоскости (см.3).

Теорема 2. Если задача линейного программирования имеет оптимальное решение, то оно совпадает с одной (двумя) из угловых точек множества допустимых решений.
Справедливость этого утверждения иллюстрируется в примере 3.

Теорема 3. Каждому допустимому базисному решению задачи линейного программирования соответствует угловая точка области допустимых решений системы ограничений, и наоборот.

Учеба и наука

Какое решение системы уравнений называется допустимым решением задачи линейного программирования

август 4, 2016 г.

Всего ответов: 1

Aromarun

октябрь 16, 2016 г.

Составляющие математической модели

Основой для решения экономических задач являются математические модели.

Математической моделью задачи называется совокупность математических соотношений, описывающих суть задачи.

Составление математической модели включает:

  • выбор переменных задачи
  • составление системы ограничений
  • выбор целевой функции

Переменными задачи называются величины Х1, Х2, Хn, которые полностью характеризуют экономический процесс. Обычно их записывают в виде вектора: X=(X1, X2. Xn).

Системой ограничений задачи называют совокупность уравнений и неравенств, описывающих ограниченность ресурсов в рассматриваемой задаче.

Целевой функцией задачи называют функцию переменных задачи, которая характеризует качество выполнения задачи и экстремум которой требуется найти.

Читать еще:  Курсы программирования pascal

В общем случае задача линейного программирования может быть записана в таком виде:

Данная запись означает следующее: найти экстремум целевой функции (1) и соответствующие ему переменные X=(X1, X2. Xn) при условии, что эти переменные удовлетворяют системе ограничений (2) и условиям неотрицательности (3).

Допустимым решением (планом) задачи линейного программирования называется любой n-мерный вектор X=(X1, X2. Xn), удовлетворяющий системе ограничений и условиям неотрицательности.

Множество допустимых решений (планов) задачи образует область допустимых решений (ОДР).

Оптимальным решением (планом) задачи линейного программирования называется такое допустимое решение (план) задачи, при котором целевая функция достигает экстремума.

Пример составления математической модели

Задача использования ресурсов (сырья)

Условие: Для изготовления n видов продукции используется m видов ресурсов. Составить математическую модель.

Известны:

  • bi ( i = 1,2,3. m) — запасы каждого i-го вида ресурса;
  • aij ( i = 1,2,3. m; j=1,2,3. n) — затраты каждого i-го вида ресурса на производство единицы объема j-го вида продукции;
  • cj ( j = 1,2,3. n) — прибыль от реализации единицы объема j-го вида продукции.

Требуется составить план производства продукции, который обеспечивает максимум прибыли при заданных ограничениях на ресурсы (сырье).

Решение:

Введем вектор переменных X=(X1, X2. Xn), где xj ( j = 1,2. n) — объем производства j-го вида продукции.

Затраты i-го вида ресурса на изготовление данного объема xj продукции равны aijxj, поэтому ограничение на использование ресурсов на производство всех видов продукции имеет вид:
Прибыль от реализации j-го вида продукции равна cjxj, поэтому целевая функция равна:

Ответ — Математическая модель имеет вид:

Каноническая форма задачи линейного программирования

В общем случае задача линейного программирования записывается так, что ограничениями являются как уравнения, так и неравенства, а переменные могут быть как неотрицательными, так и произвольно изменяющимися.

В том случае, когда все ограничения являются уравнениями и все переменные удовлетворяют условию неотрицательности, задачу линейного программирования называют канонической.

Она может быть представлена в координатной, векторной и матричной записи.

Каноническая задача линейного программирования в координатной записи имеет вид:

Каноническая задача линейного программирования в матричной записи имеет вид:

  • А — матрица коэффициентов системы уравнений
  • Х — матрица-столбец переменных задачи
  • Ао — матрица-столбец правых частей системы ограничений

Нередко используются задачи линейного программирования, называемые симметричными, которые в матричной записи имеют вид:

Приведение общей задачи линейного программирования к канонической форме

В большинстве методов решения задач линейного программирования предполагается, что система ограничений состоит из уравнений и естественных условий неотрицательности переменных. Однако при составлении моделей экономических задач ограничения в основном формируются в виде системы неравенств, поэтому необходимо уметь переходить от системы неравенств к системе уравнений.

Это может быть сделано следующим образом:

Возьмем линейное неравенство a1x1+a2x2+. +anxn≤b и прибавим к его левой части некоторую величину xn+1, такую, что неравенство превратилось в равенство a1x1+a2x2+. +anxn+xn+1=b. При этом данная величина xn+1 является неотрицательной.

Рассмотрим все на примере.

Привести к каноническому виду задачу линейного программирования:

Решение:
Перейдем к задаче на отыскивание максимума целевой функции.
Для этого изменим знаки коэффициентов целевой функции.
Для превращения второго и третьего неравенств системы ограничений в уравнения введем неотрицательные дополнительные переменные x4 x5 (на математической модели эта операция отмечена буквой Д).
Переменная х4 вводится в левую часть второго неравенства со знаком «+», так как неравенство имеет вид «≤».
Переменная x5 вводится в левую часть третьего неравенства со знаком «-«, так как неравенство имеет вид «≥».
В целевую функцию переменные x4 x5 вводятся с коэффициентом. равным нулю.
Записываем задачу в каноническом виде:

Лекция 3: Математическое программирование. Линейное программирование. Виды задач линейного программирования. Постановка задач линейного программирования и исследование их структуры. Решение задач линейного программирования симплекс-методом

1. Понятие математического программирования

Математическое программирование – это математическая дисциплина, в которой разрабатываются методы отыскания экстремальных значений целевой функции среди множества ее возможных значений, определяемых ограничениями.

Наличие ограничений делает задачи математического программирования принципиально отличными от классических задач математического анализа по отысканию экстремальных значений функции. Методы математического анализа для поиска экстремума функции в задачах математического программирования оказываются непригодными.

Для решения задач математического программирования разработаны и разрабатываются специальные методы и теории. Так как при решении этих задач приходится выполнять значительный объем вычислений, то при сравнительной оценке методов большое значение придается эффективности и удобству их реализации на ЭВМ.

Математическое программирование можно рассматривать как совокупность самостоятельных разделов, занимающихся изучением и разработкой методов решения определенных классов задач.

В зависимости от свойств целевой функции и функции ограничений все задачи математического программирования делятся на два основных класса:

  • задачи линейного программирования,
  • задачи нелинейного программирования .

Если целевая функция и функции ограничений – линейные функции, то соответствующая задача поиска экстремума является задачей линейного программирования. Если хотя бы одна из указанных функций нелинейна, то соответствующая задача поиска экстремума является задачей нелинейного программирования .

2. Понятие линейного программирования. Виды задач линейного программирования

Линейное программирование (ЛП) – один из первых и наиболее подробно изученных разделов математического программирования . Именно линейное программирование явилось тем разделом, с которого и начала развиваться сама дисциплина » математическое программирование «. Термин «программирование» в названии дисциплины ничего общего с термином «программирование (т.е. составление программы) для ЭВМ» не имеет, т.к. дисциплина » линейное программирование » возникла еще до того времени, когда ЭВМ стали широко применяться для решения математических, инженерных, экономических и др. задач.

Термин » линейное программирование » возник в результате неточного перевода английского » linear programming «. Одно из значений слова «programming» — составление планов, планирование. Следовательно, правильным переводом английского » linear programming » было бы не » линейное программирование «, а «линейное планирование», что более точно отражает содержание дисциплины. Однако, термины линейное программирование , нелинейное программирование, математическое программирование и т.д. в нашей литературе стали общепринятыми и поэтому будут сохранены.

Читать еще:  Обзор и классификация языков программирования

Итак, линейное программирование возникло после второй мировой войны и стало быстро развиваться, привлекая внимание математиков, экономистов и инженеров благодаря возможности широкого практического применения, а также математической стройности.

Можно сказать, что линейное программирование применимо для решения математических моделей тех процессов и систем, в основу которых может быть положена гипотеза линейного представления реального мира.

Линейное программирование применяется при решении экономических задач, в таких задачах как управление и планирование производства; в задачах определения оптимального размещения оборудования на морских судах, в цехах; в задачах определения оптимального плана перевозок груза (транспортная задача); в задачах оптимального распределения кадров и т.д.

Задача линейного программирования (ЛП), как уже ясно из сказанного выше, состоит в нахождении минимума (или максимума) линейной функции при линейных ограничениях.

Общая форма задачи имеет вид: найти при условиях

Наряду с общей формой широко используются также каноническая и стандартная формы. Как в канонической, так и в стандартной форме

Тест по разделу МДК 02.01.01 «Линейное программирование»

Как организовать дистанционное обучение во время карантина?

Помогает проект «Инфоурок»

1. Модель – это
1) аналог (образ) оригинала, но построенный средствами и методами отличными от оригинала +
2) подобие оригинала
3)копия оригинала

2. Экономико-математическая модель – это
1) математическое представление экономической системы (объектов, задачи, явлений, процессов и т. п.) +
2) качественный анализ и интуитивное представление объектов, задач, явлений, процессов экономической системы и ее параметров
3) эвристические описание экономической системы (объектов, задачи, явлений, процессов и т. п.)

3. Метод – это
1) подходы, пути и способы постановки и решения той или иной задачи в различных областях человеческой деятельности +
2) описание особенностей задачи (проблемы) и условий ее решения
3) требования к условиям решения той или иной задачи

4. Задача, включающая целевую функцию f и функции Ф, входящие в 1) ограничения, является задачей линейного программирования, если
1) все Ф и f являются линейными функциями относительно своих аргументов +
2) все Ф являются линейными функциями относительно своих аргументов, а функция f – нелинейна
3) функция f является линейной относительно своих аргументов, а функции Ф – нелинейны
4) только часть функций Ф и функция f являются линейными относительно своих аргументов

5. Множество всех допустимых решений системы задачи линейного программирования является
1) выпуклым +
2) вогнутым
3) одновременно выпуклым и вогнутым

6. Если задача линейного программирования имеет оптимальное решение, то целевая функция достигает нужного экстремального значения в одной из
1) вершин многоугольника (многогранника) допустимых решений +
2) внутренних точек многоугольника (многогранника) допустимых решений
3) точек многоугольника (многогранника) допустимых решений

7. В задачах линейного программирования решаемых симплекс-методом искомые переменные должны быть
1) неотрицательными +
2) положительными
3) свободными от ограничений
4) любыми

8. Симплексный метод решения задач линейного программирования включает
1) определение одного из допустимых базисных решений поставленной задачи (опорного плана)
2) определение правила перехода к не худшему решению
проверку оптимальности найденного решения
3) определение одного из допустимых базисных решений поставленной задачи (опорного плана), определение правила перехода к не худшему решению, проверка оптимальности найденного решения +

9. Графический способ решения задачи линейного программирования – это
1) построение прямых, уравнения которых получаются в результате замены в ограничениях знаков неравенств на знаки точных равенств
2) нахождение полуплоскости, определяемой каждым из ограничений задачи
3) нахождение многоугольника допустимых решений
4) построение прямой F = h = const >= 0, проходящей через многоугольник решений
5) построение вектора C, перпендикулярного прямой F = h = const
6) передвижение прямой F = h = const в направлении вектора C (в сторону увеличения h), в результате чего находят либо точку (точки), в которой целевая функция принимает максимальное значение, либо устанавливают неограниченность сверху функции на множестве допустимых решений
7) определение координат точки максимума функции и вычисление значения целевой функции в этой точке
8) все перечисленные ответы в этом задании +

10. Задача линейного программирования не имеет конечного оптимума, если
1) в точке А области допустимых значений достигается максимум целевой функции F
2) в точке А области допустимых значений достигается минимум целевой функции F
3) система ограничений задачи несовместна
4) целевая функция не ограничена сверху на множестве допустимых решений +

11. Модель задачи линейного программирования, в которой целевая функция исследуется на максимум и система ограничений задачи является системой уравнений, называется
1) стандартной
2) канонической +
3) общей
4) основной
5) нормальной

12. В линейных оптимизационных моделях, решаемых с помощью геометрических построений число переменных должно быть
1) не больше двух +
2) равно двум
3) не меньше двух
4) не больше числа ограничений +2
5) сколько угодно

13. Задача линейного программирования может достигать максимального значения
1) только в одной точке
2) в двух точках
3) во множестве точек +
4) в одной или двух точках
5) в одной или во множестве точек

14. Если в прямой задаче, какое либо ограничение является неравенством, то в двойственной задаче соответствующая переменная
1) неотрицательна +
2) положительна
3) свободна от ограничений
4) отрицательная

15. Транспортная задача является задачей …. Программирования
1) динамического
2) нелинейного
3) линейного +
4) целочисленного
5) параметрического

16. Если в транспортной задаче объем спроса равен объему предложения, то такая задача называется
1) замкнутой
2) закрытой +
3) сбалансированной
4) открытой
5) незамкнутой

17. Если в транспортной задаче объем запасов превышает объем потребностей, в рассмотрение вводят
1) фиктивный пункт производства
2) фиктивный пункт потребления +
3) изменения структуры не требуются

Ссылка на основную публикацию
ВсеИнструменты 220 Вольт
Adblock
detector