Invest-currency.ru

Как обезопасить себя в кризис?
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Процессы в linux команда

Все, что вам нужно знать о процессах в Linux

Оригинал: All You Need To Know About Processes in Linux [Comprehensive Guide]
Автор: Aaron Kili
Дата публикации: 31 марта 2017 года
Перевод: А. Кривошей
Дата перевода: август 2017 г.

В этой статье мы дадим базовое понимание процессов и кратко рассмотрим управление процессами в Linux с помощью специальных команд.
Процесс относится к выполнению программы — он представляет собой запущенный экземпляр программы, составленный из инструкций, данных, считанных из файлов, других программ, или полученных от пользователя.

Типы процессов

В Linux есть два основных типа процессов:

Процессы переднего плана (также известны как интерактивные процессы) — они инициализируются и контролируются в терминальной сессии. Другими словами, для запуска таких процессов в системе должен находиться пользователь, они не запускаются автоматически как часть системных служб.
Фоновые процессы (также известны как неинтерактивные/автоматические процессы) — не подключены к терминалу. Они не ждут ввода от пользователя.

Что такое демоны

Это специальные типы фоновых процессов, которые запускаются при загрузке системы и остаются запущенными в виде служб, они не завершаются. Демоны запускаются как системные задачи, спонтанно. Тем не менее, пользователь может контролировать их через процесс init.

Создание процессов в Linux

Обычно новый процесс создается уже существующим процессом, который делает в памяти свою точную копию. Дочерний процесс получает то же окружение, что и его родительский процесс, отличается только номер ID.

Есть два распространенных способа создания нового процесса в Linux:

1. С помощью функции System(). Этот способ сравнительно прост, однако неэффективен и создает определенные риски с точки зрения безопасности.
2. С помощью функций fork() и exec() — более продвинутая техника с точки зрения гибкости, скорости и безопасности.

Как Linux идентифицирует процессы?

Поскольку Linux — многопользовательская система, и различные пользователи могут одновременно запускать разные программы, каждый запущенный экземпляр программы должен получать уникальный идентификатор от ядра системы.
Программы идентифицируются по ID процесса (PID), а также по ID родительского процесса (PPID), поэтому процессы можно разделить на следующие категории:

Родительские процессы — это процессы, которые в процессе работы создают другие процессы.
Дочерние процессы — это процессы, созданные другими процессами.

Процесс Init

Процесс Init — это родительский процесс для всех процессов в системе, это первая программа, которая исполняется при загрузке системы Linux; он управляет всеми другими процессами в системе. Init запускается непосредственно ядром системы, поэтому он в принципе не имеет родительского процесса.

Процесс Init всегда получает ID 1. Он функционирует как приемный родитель для всех осиротевших процессов.

Для определения ID процесса можно использовать команду pidof:

Найти ID процесса и ID родительского процесса для системной оболочки можно с помощью команд:

Запуск процессов в Linux

При старте команды или программы (например cloudcmd – CloudCommander), она запускает процесс в системе. Вы можете запустить процесс переднего плана (интерактивный), как показано ниже, он подключится к терминалу и пользователь сможет взаимодействовать с ним:

Фоновые процессы в Linux

Для запуска фонового процесса (неинтерактивного) используется символ &, при этом процесс не сможет читать ввод от пользователя, пока не будет перемещен на передний план.

Вы также можете отправить процесс на задний план, приостановив его с помощью [Ctrl + Z], это отправит сигнал SIGSTOP процессу, тем самым прекратив его работу; он простаивает:

Для продолжения выполнения приостановленного в фоне процесса, используется команда bg:

Для перевода процесса из фонового режима на передний план используется команда fg вместе с ID:

Состояние процесса в Linux

В зависимости от различных обстоятельств состояние процесса во время работы может меняться. В Linux процесс может находиться в следующих состояниях:

Running (работа) — процесс работает (он является текущим процессом в системе) или готов к работе (ждет выделения ресурсов процессора).
Waiting (ожидание) — в этом состоянии процесс ждет события, которое должно запустить его, или выделения системных ресурсов.
Кроме того, ядро системы делит процессы в состоянии ожидания на два типа: перываемые процессы, состояние ожидания которых может быть прервано сигналом, и непрерываемые, состояние ожидания которых может быть прервано только аппаратным способом.
Stopped (остановка) — в этом состоянии процесс останавливает работу, обычно после получения соответствующего сигнала. Например, процесс может быть остановлен для отладки.
Zombie (зомби) — процесс мертв, то есть он был остановлен, но в системе осталась выполняемая им задача.

Как просмотреть активные процессы в Linux

В Linux есть несколько утилит для просмотра запущенных в системе процессов, наиболее широко известны команды ps и top:

1. Команда ps

Она выводит информацию о выбранных активных процессах, как показано ниже.

2. top – утилита системного мониторинга

top — это мощная утилита, которая позволяет в режиме реального времени просматривать список запущенных процессов, как показано ниже:

3. glances – утилита системного мониторинга

glances — это сравнительно новая утилита для мониторинга активности системы с продвинутыми возможностями:

Есть также еще несколько полезных программ, которые вы можете использовать для просмотра списка активных процессов, почитать о них можно по ссылкам ниже.

Управление процессами в Linux

В Linux также имеются команды для управления процессами, например kill, pkill, pgrep и killall. Ниже приведено несколько примеров их использования:

Если вы хотите подробно изучить использование этих команд, информация по ссылкам ниже.

Обратите внимание, что с их помощью вы можете завршать зависшие приложения, которые тормозят вашу систему.

Отправка сигналов процессу

Фундаментальный способ управления процессами в Linux — это отправка им сигналов, которых имеется достаточно много. Посмотреть список всех сигналов можно с помощью команды:

Для отправки сигналов процессу используются описанные выше команды kill, pkill или pgrep. Однако программа ответит на сигнал, только если она запрограммирована распознавать такой сигнал.

Большинство сигналов предназначены для использования системой или программистами при написании кода. Следующие сигналы могут быть полезны пользователю:

SIGHUP 1 – отправляется процессу при закрытии контролирующего его терминала.
SIGINT 2 – отправляется процессу контролирующим его терминалом, если пользователь прерывает работу процесса клавишами [Ctrl+C].
SIGQUIT 3 – отправляется процессу, если пользователь посылает сигнал выхода из программы [Ctrl+D].
SIGKILL 9 – этот сигнал немедленно завершает (убивает) процесс без выполнения любых операций очистки файлов, логов и т.д.
SIGTERM 15 – это сигнал завершения работы программы (он по умоланию отправляется командой kill).
SIGTSTP 20 – отправляется процессу контролирующим его терминалом с запросом на остановку (terminal stop); инициируется при нажатии [Ctrl+Z].

Ниже приведены примеры использования команд kill для завершения работы Firefox при его зависании с использованием PID:

Для завершения программы с использованием ее названия используются команды pkill или killall:

Изменение приоритета процесса

В Linux все активные процессы имеют определенное значение приоритета (nice). Процессы с более высоким приоритетом обычно получают больше процессорного времени, чем процессы с более низким приоритетом.

Однако пользователь с привилегиями root может менять приоритет с помощью команд nice и renice.
В выводе команды top столбец NI отображает значения nice для процессов.

Вы можете использовать команду nice, чтобы задать значение nice процесса. Не забывайте, что обычный пользователь может присвоить процессу значение nice от 0 до 20, только если это процесс ему принадлежит.
Отрицательные значения nice может использовать только пользователь root.

Читать еще:  Проверить систему на ошибки

Для понижения приоритета процесса используется команда renice:

Другие статьи об управлении процессами в Linux вы найдете на странице «Процессы в Linux-системе».

Процессы в linux команда

Сухая формулировка говорит нам что процесс это — совокупность программного кода и данных, загруженных в память ЭВМ. На первый взгляд процесс — это запущенная программа (приложение) или команда. Но это не совсем так. Некоторые приложения могут создавать несколько процессов одновременно.

Код процесса не обязательно должен выполняться в текущий момент времени, так как процесс может находиться в состоянии спящего. В этом случае выполнение кода такого процесса приостановлено. Существует всего 3 состояния, в которых может находиться процесс:

Работающий процесс — в данный момент код процесса выполняется.

Спящий процесс — в данный момент код процесса не выполняется в ожидании какого либо события (нажатия клавиши на клавиатуре, поступление данных из сети и т.д.)

Процесс-зомби — сам процесс уже не существует, его код и данные выгружены из оперативной памяти, но запись в таблице процессов остается по тем или иным причинам.

Каждому процессу в системе назначаются числовые идентификаторы (личные номера) в диапазоне от 1 до 65535 (PID — Process Identifier — идентификатор процесса) и идентификаторы родительского процесса (PPID — Parent Process Identifier — идентификатор родительского процесса). PID является именем процесса, по которому мы можем адресовать процесс в операционной системе при использовании различных средств просмотра и управления процессами. PPID определяет родственные отношения между процессами, которые в значительной степени определяют его свойства и возможности. Другие параметры, которые необходимы для работы программы, называют «окружение процесса». Одним из таких параметров является управляющий терминал — имя терминального устройства, на которое процесс выводит информацию и с которого информацию получает. Управляющий терминал имеют далеко не все процессы. Процессы, не привязанные к какому-то конкретному терминалу называются «демонами» (daemons). Такие процессы, будучи запущенными пользователем, не завершают свою работу по окончании сеанса, а продолжают работать, так как они не связаны никак с текущим сеансом и не могут быть автоматически завершены. Как правило, с помощью демонов реализуются серверные службы, так например сервер печати реализован процессом-демоном cupsd, а сервер журналирования — syslogd.

Для просмотра списка процессов в Linux существует команда ps. Формат команды следующий:

ps [PID] [options] — просмотр списка процессов. Без параметров ps показывает все процессы, которы были запущены в течение текущей сессии, за исключением демонов. Options может принимать одно из следующих значений или их комбинации:

-а или -e — показать все процессы

-f — полный листинг

-w — показать полные строки описания процессов. Если они превосходят
длину экрана, то перенести описание на следующую строку.

Это далеко не все параметры команды ps. Остальные параметры Вы можете узнать, просто набрав man ps.

Пример1:

[gserg@WEBMEDIA gserg]$ ps

PID TTY TIME CMD

3126 pts/2 00:00:00 bash

3158 pts/2 00:00:00 ps

Пример2:

[gserg@WEBMEDIA gserg]$ ps 3126

PID TTY STAT TIME COMMAND

3126 pts/2 S 0:00 /bin/bash

Пример3:

[gserg@WEBMEDIA gserg]$ ps -ef

UID PID PPID C STIME TTY TIME CMD

root 1 0 0 10:01 ? 00:00:03 init [5]

root 2 1 0 10:01 ? 00:00:00 [keventd]

root 3 1 0 10:01 ? 00:00:00 [kapmd]

root 4 1 0 10:01 ? 00:00:00 [ksoftirqd_CPU0]

root 5 1 0 10:01 ? 00:00:24 [kswapd]

root 6 1 0 10:01 ? 00:00:00 [bdflush]

gserg 3126 3124 0 17:56 pts/2 00:00:00 /bin/bash

gserg 3160 3126 0 17:59 pts/2 00:00:00 ps -ef

Пример4:

[gserg@WEBMEDIA gserg]$ ps -efw

UID PID PPID C STIME TTY TIME CMD

root 1 0 0 10:01 ? 00:00:03 init [5]

root 2 1 0 10:01 ? 00:00:00 [keventd]

root 3 1 0 10:01 ? 00:00:00 [kapmd]

root 4 1 0 10:01 ? 00:00:00 [ksoftirqd_CPU0]

root 5 1 0 10:01 ? 00:00:24 [kswapd]

root 1130 1 0 10:02 ? 00:00:00 /usr/sbin/apmd -p 10 -w 5 -W -P /etc/sysconfig/apm-scripts/apmd_proxy

gserg 3172 3126 0 18:01 pts/2 00:00:00 ps -efw

Процессы в ОС Linux обладают теми же правами, которыми обладает пользователь, от чьего имени был запущен процесс.

На самом деле операционная система воспринимает работающего в ней пользователя как набор запущенных от его имени процессов. Ведь и сам сеанс пользователя открывается в командной оболочке (или оболочке Х) от имени пользователя. Поэтому когда мы говорим «права доступа пользователя к файлу» то подразумеваем «права доступа процессов, запущенных от имени пользователя к файлу».

Для определения имени пользователя, запустившего процесс, операционная система использует реальные идентификаторы пользователя и группы, назначаемые процессу. Но эти идентификаторы не являются решающими при определении прав доступа. Для этого у каждого процесса существует другая группа идентификаторов — эффективные.

Как правило, реальные и эффективные идентификаторы процессов одинаковые, но есть и исключения. Например, для работы утилиты passwd необходимо использовать идентификатор суперпользователя, так как только суперпользователь имеет права на запись в файлы паролей. В этом случае эффективные идентификаторы процесса будут отличаться от реальных. Возникает резонный вопрос — как это было реализовано?

У каждого файла есть набор специальных прав доступа — биты SUID и SGID. Эти биты позволяют при запуске программы присвоить ей эффективные идентификаторы владельца и группы-владельца соответственно и выполнять процесс с правами доступа другого пользователя. Так как файл passwd принадлежит пользователю root и у него установлен бит SUID, то при запуске процесс passwd будет обладать правами пользователя root.

Устанавливаются биты SGID и SUID командой chmod:

chmod u+s filename — установка бита SUID

chmod g+s filename — установка бита SGID

Мы с вами рассмотрели понятие процесса, способы отображения процессов и права доступа. Но для комфортной работы в операционной системе этого, согласитесь, мало. Необходимо еще эффективно управлять процессами. А для реализации управления мы сначала рассмотри строение таблицы процессов:

Родителем всех процессов в системе является процесс init. Его PID всегда 1, PPID — 0. Всю таблицу процессов можно представить себе в виде дерева, в котором корнем будет процесс init. Этот процесс хоть и не является частью ядра, но выполняет в системе очень важную роль — определяет текущий уровень инициализации системы и следит чтобы были запущены программы, позволяющие пользователю общаться с компьютером (mingetty, X или другие).

Процессы, имена которых заключены в квадратные скобки, например «[keventd]» — это процессы ядра. Эти процессы управляют работой системы, а точнее такими ее частями, как менеджер памяти, планировщик времени процессора, менеджеры внешних устройств и так далее.

Остальные процессы являются пользовательскими, запущенными либо из командной строки, либо во время инициализации системы.

Жизнь каждого процесса представлена следующими фазами:

Создание процесса — на этом этапе создается полная копия того процесса, который создает новый. Например, вы запустили из интерпретатора на выполнение команду ls. Командный интерпретатор создает свою полную копию.

Загрузка кода процесса и подготовка к запуску — копия, созданная на первом этапе заменяется кодом задачи, которую необходимо выполнить и создается ее окружение — устанавливаются необходимые переменные и т.п.

Выполнение процесса

Состояние зомби — на этом этапе выполнение процесса закончилось, его код выгружается из памяти, окружение уничтожается, но запись в таблице процессов еще остается.

Умирание процесса — после всех завершающих стадий удаляется запись из таблицы процессов — процесс завершил свою работу.

Во время работы процесса, ядро контролирует его состояние, и в случае возникновения непредвиденной ситуации управляет процессом с помощью посылки ему сигнала. Сигнал — это простейший способ межпроцессорного (то есть между процессами) взаимодействия. Существует несколько типов сигналов. Для каждого из типов предусмотрено действие по умолчанию. Процесс может воспользоваться действием по умолчанию, или, если у него есть обработчик сигнала, то он может перехватить и обработать или игнорировать сигнал. Сигналы SIGKILL и SIGSTOP невозможно ни перехватить, ни игнорировать.

Читать еще:  Архитектура и состав пк

По умолчанию возможны несколько действий:

игнорировать — продолжать работу, несмотря на то, что получен сигнал.

завершить — завершить работу процесса.

завершить + core — завершить работу процесса и создать файл в текущем каталоге с именем core, содержащий образ памяти процесса (код и данные).

остановить — приостановить выполнение процесса, но не завершать его работу и не выгружать код из памяти.

Вот список всех сигналов, существующих в системе на сегодняшний день:

Управление процессами в Linux

Материал этой статьи ни в коем случае не претендует на свою избыточность. Более подробно о процессах вы можете прочитать в книгах, посвященных программированию под UNIX.

Процессы. Системные вызовы fork() и exec(). Нити.

Процесс в Linux (как и в UNIX) — это программа, которая выполняется в отдельном виртуальном адресном пространстве. Когда пользователь регистрируется в системе, автоматически создается процесс, в котором выполняется оболочка (shell), например, /bin/bash.

В Linux поддерживается классическая схема мультипрограммирования. Linux поддерживает параллельное (или квазипараллельного при наличии только одного процессора) выполнение процессов пользователя. Каждый процесс выполняется в собственном виртуальном адресном пространстве, т.е. процессы защищены друг от друга и крах одного процесса никак не повлияет на другие выполняющиеся процессы и на всю систему в целом. Один процесс не может прочитать что-либо из памяти (или записать в нее) другого процесса без «разрешения» на то другого процесса. Санкционированные взаимодействия между процессами допускаются системой.

Ядро предоставляет системные вызовы для создания новых процессов и для управления порожденными процессами. Любая программа может начать выполняться только если другой процесс ее запустит или произойдет какое-то прерывание (например, прерывание внешнего устройства).

В связи с развитием SMP (Symmetric Multiprocessor Architectures) в ядро Linux был внедрен механизм нитей или потоков управления (threads). Нить — это процесс, который выполняется в виртуальной памяти, используемой вместе с другими нитями процесса, который обладает отдельной виртуальной памятью.

Если интерпретатору (shell) встречается команда, соответствующая выполняемому файлу, интерпретатор выполняет ее, начиная с точки входа (entry point). Для С-программ entry point — это функция main. Запущенная программа тоже может создать процесс, т.е. запустить какую-то программу и ее выполнение тоже начнется с функции main.

Для создания процессов используются два системных вызова: fork() и exec. fork() создает новое адресное пространство, которое полностью идентично адресному пространству основного процесса. После выполнения этого системного вызова мы получаем два абсолютно одинаковых процесса — основной и порожденный. Функция fork() возвращает 0 в порожденном процессе и PID (Process ID — идентификатор порожденного процесса) — в основном. PID — это целое число.
Теперь, когда мы уже создали процесс, мы можем запустить программу с помощью вызова exec. Параметрами функции exec является имя выполняемого файла и, если нужно, параметры, которые будут переданы этой программе. В адресное пространство порожденного с помощью fork() процесса будет загружена новая программа и ее выполнение начнется с точки входа (адрес функции main).

В качестве примера рассмотрим этот фрагмент программы

if (fork()==0) wait(0);
else execl(«ls», «ls», 0); /* порожденный процесс */

Теперь рассмотрим более подробно, что же делается при выполнении вызова fork():

  1. Выделяется память для описателя нового процесса в таблице процессов
  2. Назначается идентификатор процесса PID
  3. Создается логическая копия процесса, который выполняет fork() — полное копирование содержимого виртуальной памяти родительского процесса, копирование составляющих ядерного статического и динамического контекстов процесса-предка
  4. Увеличиваются счетчики открытия файлов (порожденный процесс наследует все открытые файлы родительского процесса).
  5. Возвращается PID в точку возврата из системного вызова в родительском процессе и 0 — в процессе-потомке.

Общая схема управления процессами
Каждый процесс может порождать полностью идентичный процесс с помощью fork(). Родительский процесс может дожидаться окончания выполнения всех своих процессов-потомков с помощью системного вызова wait.
В любой момент времени процесс может изменить содержимое своего образа памяти, используя одну из разновидностей вызова exec. Каждый процесс реагирует на сигналы и, естественно, может установить собственную реакцию на сигналы, производимые операционной системой. Приоритет процесса может быть изменен с помощью системного вызова nice.

Сигнал — способ информирования процесса ядром о происшествии какого-то события. Если возникает несколько однотипных событий, процессу будет подан только один сигнал. Сигнал означает, что произошло событие, но ядро не сообщает сколько таких событий произошло.

Примеры сигналов:

  1. окончание порожденного процесса (например, из-за системного вызова exit (см. ниже))
  2. возникновение исключительной ситуации
  3. сигналы, поступающие от пользователя при нажатии определенных клавиш.

Установить реакцию на поступление сигнала можно с помощью системного вызова signal
func = signal(snum, function);

snum — номер сигнала, а function — адрес функции, которая должна быть выполнена при поступлении указанного сигнала. Возвращаемое значение — адрес функции, которая будет реагировать на поступление сигнала. Вместо function можно указать ноль или единицу. Если был указан ноль, то при поступлении сигнала snum выполнение процесса будет прервано аналогично вызову exit. Если указать единицу, данный сигнал будет проигнорирован, но это возможно не для всех процессов.

С помощью системного вызова kill можно сгенерировать сигналы и передать их другим процессам.
kill(pid, snum);
где pid — идентификатор процесса, а snum — номер сигнала, который будет передан процессу. Обычно kill используется для того, чтобы принудительно завершить («убить») процесс.
Pid состоит из идентификатора группы процессов и идентификатора процесса в группе. Если вместо pid указать нуль, то сигнал snum будет направлен всем процессам, относящимся к данной группе (понятие группы процессов аналогично группе пользователей). В одну группу включаются процессы, имеющие общего предка, идентификатор группы процесса можно изменить с помощью системного вызова setpgrp. Если вместо pid указать -1, ядро передаст сигнал всем процессам, идентификатор пользователя которых равен идентификатору текущего выполнения процесса, который посылает сигнал.

Убиваем процессы в Linux — команды ps, kill и killall

Под процессом мы будем понимать запущенную в системе копию программы. Например, если вы открыли три окна калькулятора (например, gcalctool), это значит, что вы запустили три процесса.

Находим PID зависшего процесса

Каждый процесс в Linux имеет свой идентификатор, называемый PID. Перед тем, как выполнить остановку процесса, нужно определить его PID. Для этого воспользуемся командами ps и grep. Команда ps предназначена для вывода списка активных процессов в системе и информации о них. Команда grep запускается одновременно с ps (в канале) и будет выполнять поиск по результатам команды ps. Вывести список всех процессов можно, выполнив в командной строке:

Но, как правило, список очень большой и найти процесс, который мы хотим «убить», бывает не так просто. Здесь на помощь приходит команда grep. Например, чтобы найти информацию о процессе с именем gcalctool выполните команду:

Команда grep выполнит поиск по результатам команды ps и на экран будут выведены только те строки, которые содержат строку (слово) gcalctool. Здесь есть одна интересная деталь, например, если у вас не запущено приложение gcalctool, то после выполнения ps axu | grep gcalctool вы получите:

Читать еще:  Архитектура открытого типа

То есть мы получили сам процесс grep, так как в качестве параметра команде мы указали слово gcalctool, и grep нашел сам себя в выводе команды ps.

Если процесс gcalctool запущен, то мы получим:

Здесь нас интересует строка: «yuriy 25609 7.6 0.4 500840 17964 ? Sl 10:20 0:00 gcalctool». Число 25609 и есть идентификатор (PID) процесса gcalctool.

Есть еще один более простой способ узнать PID процесса — это команда pidof, которая принимает в качестве параметра название процесса и выводит его PID. Пример выполнения команды pidof:

«Убиваем» процесс командой kill

Когда известен PID процесса, мы можем убить его командой kill. Команда kill принимает в качестве параметра PID процесса. Например, убьем процесс с номером 25609:

Вообще команда kill предназначена для посылки сигнала процессу. По умолчанию, если мы не указываем какой сигнал посылать, посылается сигнал SIGTERM (от слова termination — завершение). SIGTERM указывает процессу на то, что необходимо завершиться. Каждый сигнал имеет свой номер. SIGTERM имеет номер 15. Список всех сигналов (и их номеров), которые может послать команда kill, можно вывести, выполнив kill -l. Чтобы послать сигнал SIGKILL (он имеет номер 9) процессу 25609, выполните в командой строке:

Сигнал SIGTERM может и не остановить процесс (например, при перехвате или блокировке сигнала), SIGKILL же выполняет уничтожение процесса всегда, так как его нельзя перехватить или проигнорировать.

Убиваем процессы командой killall

Команда killall в Linux предназначена для «убийства» всех процессов, имеющих одно и то же имя. Это удобно, так как нам не нужно знать PID процесса. Например, мы хотим закрыть все процессы с именем gcalctool. Выполните в терминале:

Команда killall, также как и kill, по умолчанию шлет сигнал SIGTERM. Чтобы послать другой сигнал нужно воспользоваться опцией -s. Например:

Заключение

Некоторые процессы не удается остановить под обычным пользователем. Например, если процесс был запущен от имени пользователя root или от имени другого пользователя системы, то команды kill и killall нужно выполнять от имени суперпользователя, добавляя sudo (в Ubuntu):

Бывают ситуации, когда вы работаете в графическом интерфейсе (например, GNOME) и вам не удается открыть эмулятор терминала, чтобы остановить зависший процесс. Тогда можно переключиться на виртуальную консоль клавишами Ctrl+Alt+F1, залогиниться в ней и выполнять команды уже из нее. А потом перейти обратно, нажав Ctrl+Alt+F7.

Справку по использованию любой команды можно получить командой man:

Как остановить процесс Linux

Многим современным пользователям известно, что операционная система Linux работает существенно стабильнее, чем ОС Windows. Она быстрее загружает различные программы и сервисы. Случаются ситуации, когда необходимо в срочном порядке завершить определенный процесс.

Такая задача может потребоваться в том случае, если программа зависла после запуска системного сервиса в фоновом режиме с помощью терминала, а не системы инициализации. На самом деле ситуаций может быть множество. Убить определенный процесс в ОС «Линукс» значительно проще, чем перезагрузить всю систему, установленную на персональном компьютере.

Сигналы как часть завершения процесса

Управлять процессами в ОС Linux можно с помощью специальных сигналов. Одновременно с этим, пользователь по мере необходимости завершает ненужный процесс.

Сигналы могут передаваться как со стороны самой системы, так и со стороны пользователя. Во втором случае потребуется введение специальной команды или использование определенного сочетания клавиш в терминале.

Если процессу пришел сигнал о необходимости его завершения, потребуется организовать определенные подготовительные действия. Изначально завершаются дочерние процессы, удаляются временные файлы и сокеты.

Стоит отметить, что процессы в ОС «Линукс» могут реагировать не на все сигналы. Рекомендуется рассмотреть максимально подробно те, которые применяются при завершении процессов:

  • SIGINT. Этот сигнал является самым безобидным. Он будет отправлен процессу, который запущен из терминала путем сочетания клавиш «Ctrl+C». Процесс будет завершен правильно, а управление возвращается к пользователю.
  • SIGQUIT. Такой сигнал также отправляется путём сочетания клавиш, но распространяется на программу, запущенную в самом терминале. Сигнал сообщит ей, что необходимо срочное завершение. В данном случае программа корректно завершится или просто проигнорирует сигнал. Главное отличие от вышеописанного варианта – процесс сопровождается генерированием дампа памяти. Здесь используется сочетание клавиш «Ctrl+/».
  • SIGHUP. Данный сигнал сообщит определенному процессу, что соединение с терминалом управления прервано. Он отправляется не пользователем, а самой системой. Сигнал может возникнуть при закрытии доступа к интернету.
  • SIGTERM. Этот сигнал свидетельствует о немедленном завершении процессов, но обрабатывается с помощью специальных программ. Именно поэтому появляется возможность устранения всех дочерних процессов, освобождения ресурсов.
  • SIGKILL. Такой сигнал также немедленно завершает процессы. Главное отличие от предыдущего варианта – сигнал передаётся не на сам процесс, а на ядро, где в последующем обрабатывается. В этом случае ресурсы и дочерние процессы не завершаются в принудительном порядке.

Пользователь должен быть осведомлён, что все процессы обязаны завершаться максимально корректно. При выполнении такой процедуры закрываются и удаляются временные файлы, освобождаются порты и сокеты.

Синтаксис

Чтобы передать предварительно выбранный сигнал определенному процессу в Linux, рекомендуется воспользоваться специальной утилитой kill. Она имеет весьма простой синтаксис:

kill (-сигнал) (pid_процесса)

Здесь можно использовать любой сигнал, который представлен в вышеописанном списке. Если данный параметр не задать в команде, «по умолчанию» будет использован SIGTERM. Именно он практически моментально завершит выбранную вами программу.

Стоит отметить, что перед запуском команды требуется определиться с процессом, который нужно завершить. Перед ним указывается уникальный идентификатор «pid».

К примеру, в операционной системе подключенный по ssh пользователь «ya». Нам необходимо завершить этот процесс, тем самым закрыть подключение по ssh с использованием утилиты kill. Первоначально требуется определить ее идентификатор с помощью команды «ps».

ps aux | grep ssh

На экране вашего монитора появится окно, где в первом столбце прописано имя пользователя, во втором тот самый pid, который нужен для завершения процесса.

Как видно на скриншоте, pid который нам нужен 2590. Завершим подключение пользователя «ya» с помощью сигнала SIGTERM.

Бывают различные ситуации. В некоторых случаях после введения вышеописанной программы процесс продолжает висеть в ОС «Линукс». Проверить его наличие можно также с помощью утилиты «ps» (процесс ее запуска описан выше). В данном случае можно воспользоваться более действенным сигналом SIGKILL, где запрос идет непосредственно через ядро всей системы. Необходимо ввести – kill -KILL 20445.

После ведения такой команды рекомендуется снова запустить утилиту «ps». Если вы обнаружите, что процесс запущен от имени пользователя, которого завершали прцесс ( в нашем случае это ya), потребуется дополнительное использование утилиты «sudo».

Особенности завершения процесса с использованием команды «pkill»

Главная отличительная особенность данной утилиты – вместо идентификатора процесса требуется ввести имя программы. Синтаксис и поведение будет аналогичным.

Утилита «pkill» отсканирует директорию и самостоятельно найдет ID с аналогичным именем. Только после этого будет подан сигнал SIGTERM. Например, закроем программу mc.

Особенности завершения процесса с использованием команды «killall»

Такая утилита будет работать аналогично двум вышеописанным вариантам. Она также может понимать имя процесса, своевременно найдет его в директории.

Главная отличительная особенность – будут обнаружены и завершены все процессы, которые имеют такое имя.

При использовании утилит важно понимать, что к постановке задач требуется отнестись максимально ответственно. Если сделать что-то не правильно, могут возникнуть сбои в работе ОС «Линукс».

Ссылка на основную публикацию
ВсеИнструменты 220 Вольт
Adblock
detector
×
×