Invest-currency.ru

Как обезопасить себя в кризис?
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Методика прогнозного анализа

Обзор методов прогнозирования

Моделирование

Модель – это упрощенный образ объекта из реальной жизни, в котором отражаются его наиболее важные характеристики, с точки зрения исследования.

Что такое прогнозирование?

Прогнозирование — это предвидение (предсказание), которое предполагает состояние или описание возможных или желательных аспектов, состояний, решений, проблем будущего.

Прогноз — это результат процесса прогнозирования, выраженный в словесной, математической, графической или другой форме суждения о возможном состоянии объекта и его среды в будущий период времени.
Метод – это сложный прием, упорядоченная совокупность простых приемов, направленных на разработку прогноза в целом; путь, способ достижения цели, исходящий из знания наиболее общих закономерностей.
Методика – определенное сочетание приемов (способов) выполнения прогностических операций, получение и обработка информации о будущем на основе однородных методов разработки прогноза.
Методология прогнозирования – область знания о методах, способах, системах прогнозирования.
Система прогнозирования – это упорядоченная совокупность методик, технических средств, предназначенная для прогнозирования сложных явлений или процессов.

Одна из классификаций методов прогнозирования

Формализованные методы:

  • Метод эстраполяции трендов;
  • Методы корреляционного и регрессионного анализов;
  • Методы математического моделирования.

Экспертные методы прогнозирования:
1. Индивидуальные методы

  • Метод составления сценариев;
  • Метод «интервью»;
  • Метод аналитических докладных записок.

2. Коллективные методы

  • Метод анкетных опросов;
  • Метод «комиссий»;
  • Метод «мозговых атак»;
  • Метод «Дельфи».

Экспертиза: анкетирование, интервьюирование, метод мозговой атаки (штурма), метод контрольных вопросов, метод аналитических докладных записок, метод лицом к лицу, метод ситуационного анализа, метод суда, метод «комиссий» («круглого стола»), «дельфийская техника» (метод «Дельфи»)
Фактографические методы: экстраполяция, трендовая модель, тренд-анализ, интерполяция, моделирование, математическое моделирование, сценарии, «прогнозы до абсурда» и пр.
Статистические методы: корреляционный анализ, регрессионный анализ, факторный анализ, распознавание образов, вариационное исчисление, спектральный анализ, цепи Маркова, алгебра логики, теория игр и др.

Признаки классификации прогнозовВиды прогнозов
Временной охват (горизонт прогнозирования)краткосрочные
среднесрочные
долгосрочные
Типы прогнозированияэкстраполятивное
альтернативное
Степень вероятности будущих событийвариантные
инвариантные
Способ представления результатов прогнозаточечные
интервальные

Прогнозирование продаж

1. Определение тренда (тенденции роста/падения)
2. Оценка влияния стратегии компании на развитие тренда
3. Применение коэффициентов сезонности
4. Построение прогноза продаж
Экстраполяция динамических рядов предполагает, что закономерность развития, действующая в прошлом (внутри ряда динамики), сохранится и в будущем.
Тренд (тенденция) — это долговременная тенденция изменения исследуемого временного ряда.
Временной ряд – это числовые значения определенного статистического показателя в последовательные моменты или периоды времени.
Коэффициент сезонности — это величина, на которую увеличиваются / уменьшаются продажи по сравнению со средними в определенный период времени.

Экономические циклы

Регрессионный анализ

Регрессионный анализ — статистический метод исследования влияния одной или нескольких независимых переменных X1,X2,…,Xp на зависимую переменную Y. Уравнение линейной регрессии Yх = a+b*X, где а и b оцененные коэффициенты регрессии.
Регрессия — функция, позволяющая по средней величине одного признака определить среднюю величину другого признака, корреляционно связанного с первым.

Обзор категорий методов прогнозирования

Прогнозирование — это процесс построение предсказания будущего на основе исторических данных, текущих данных (текущей ситуации) и на основе анализа трендов. Риск и неопределенность являются центральными факторами для прогнозирования, поэтому в соответствии с лучшими практиками, необходимо указывать степень неопределенности по отношению к прогнозам.
Корректный подход к оценке метода прогнозирования включает несколько этапов. Следует выделить пять важных этапов:

  • тщательное изучение природы исследуемого объекта или процесса для выбора адекватного метода прогнозирования;
  • выделение двух групп среди доступных данных – для разработки прогнозов и для проверки полученных результатов;
  • уточнение исходных данных с целью обнаружения ошибок;
  • разработка прогнозов и оценка достоверности полученных результатов;
  • использование (интерпретация) полученных результатов и выполнение, при необходимости, уточнения и дополнения прогнозов.

Категории методов прогнозирования

Качественные методы в сравнении с количественными методами

Качественные методы прогнозирования — субъективны, основаны на мнении и суждении потребителей, экспертов. Качественные методы подходят тогда, когда отсутствуют исторические данные. Данные методы применяются, как правило, для среднесрочных и долгосрочных решений. Примерами качественных методов прогнозирования являются исследование рынка, метод Делфи, историческая аналогия жизненного цикла и т.д.
Количественные модели прогнозирования используются для прогнозирования будущих данных в виде функции от исторических данных. Они подходят для использования, когда исторические числовые данные доступны и когда ожидается сохранение динамики данных в будущем. Эти методы, как правило, применяются для краткосрочного и среднесрочного прогнозирования. Примерами количественных методов прогнозирования являются: скользящие средние, экспоненциальное сглаживание, мультипликативные сезонные индексы и т.д.

Метод средних

В данном подходе прогнозирования, все будущие значения принимаются равными средним значениям исторических данных. Этот подход может быть использован для любых исторических данных.
Метод усреднения позволяет разработать прогноз, основываясь на среднем значении прошлых наблюдений.

«Наивный» подход

Наивный метод основан на предположении, что будущее лучше всего характеризуется последними изменениями. Метод основывается на предположении о том, что прогнозируемые показатели в будущем периоде равно показателям предшествующего периода. Наивный прогноз позволяет работать при отсутствии исторических данных. Наивный прогноз понятен, прост в подготовке, быстр в реализации, не требует, фактически, никаких затрат. Основным недостатком наивного прогнозирования является вероятная низкая точность прогноза.

Метод скользящих средних

Метод скользящих средних является одним из широко известных методов сглаживания временных рядов. Применяя этот метод, можно элиминировать случайные колебания и получить значения, соответствующие влиянию главных факторов.
Сглаживание с помощью скользящих средних основано на том, что в средних величинах взаимно погашаются случайные отклонения. Это происходит вследствие замены первоначальных уровней временного ряда средней арифметической величиной внутри выбранного интервала времени. Полученное значение относится к середине выбранного интервала времени (периода).
Затем период сдвигается на одно наблюдение, и расчет средней повторяется. При этом периоды определения средней берутся все время одинаковыми. Таким образом, в каждом рассматриваемом случае средняя центрирована, т.е. отнесена к серединной точке интервала сглаживания и представляет собой уровень для этой точки.
При сглаживании временного ряда скользящими средними в расчетах участвуют все уровни ряда. Чем шире интервал сглаживания, тем более плавным получается тренд. Сглаженный ряд короче первоначального на (n–1) наблюдений, где n – величина интервала сглаживания.

Сезонный “наивный” подход

Сезонный наивный метод прогнозирования приравнивает каждый прогнозируемый период равным соответствующему сезону в исторических данных. Например, прогнозируемые величины в апреле будут равны историческим данным за апрель предыдущего года. Данный метод применяется тогда, когда исторические данные характеризуются высоким уровнем сезонности.

Методы временных рядов

Методы временных рядов используют исторические данные в качестве основы для оценки будущих результатов.

  • Moving average (Скользящее среднее);
  • Weighted moving average (Взвешенная скользящая средняя);
  • Kalman filtering (фильтр Калмана);
  • Exponential smoothing (Экспоненциальное сглаживание);
  • Autoregressive moving average (ARMA) — Авторегрессия скользящего среднего;
  • Autoregressive integrated moving average (ARIMA) e.g. Box-Jenkins — интегрированная модель авторегрессии скользящего среднего, например, модель Бокса—Дженкинса;
  • Extrapolation (Экстраполяция);
  • Linear prediction (Линейное прогнозирование);
  • Trend estimation (Оценка тренда);
  • Growth curve (statistics) — Кривая роста (статистические данные).

Причинно-следственные методы/эконометрические методы прогнозирования

Некоторые методы прогнозирования пытаются идентифицировать основные факторы, которые могут повлиять на прогноз. Например, информация о погоде может помочь улучшить прогноз продаж зонтиков.
Причинно-следственные методы включают в себя:

  • Регрессионный анализ содержит в себе большую группу методов для прогнозирования будущих показателей, сюда входят параметрические методы (линейные и нелинейные) и непараметрические методы.
  • Autoregressive moving average with exogenous inputs (ARMAX) — Авторегрессия скользящего среднего с экзогенными входными данными.
Читать еще:  Анализ земельного налога

Экзогенные переменные — переменные, задающиеся извне, значения которых задаются вне модели.
Эндогенные переменные — переменные, значение которых формируется внутри модели.

Методы экспертных оценок

  • Composite forecasts (составные прогнозы)
  • Cooke’s method (метод Кука)
  • Delphi method (метод Дельфи)
  • Forecast by analogy (Прогноз по аналогии)
  • Scenario building (Построение сценариев)
  • Statistical surveys (Статистическое обследование)
  • Technology forecasting (Прогнозирование технологий)

Методы искусственного интеллекта

Методы искусственного интеллекта

  • Искусственные нейронные сети
  • Групповые методы обработки данных
  • Метод опорных векторов

В настоящее время по данной категории активно применяются следующие методы в специализированных программах:

  • Data mining (Интеллектуальный анализ данных)
  • Machine Learning (Машинное обучение)
  • Pattern Recognition (Распознавание образов)

Точность прогнозирования

Рассмотрим наиболее часто рассчитываемые ошибки для прогнозов

  • Mean absolute error (MAE) — Средняя абсолютная ошибка
  • Mean Absolute Percentage Error (MAPE) — Средняя авбсолютная процентная ошибка
  • Mean Absolute Deviation (MAD) — Среднее абсолютное отклонение
  • Percent Mean Absolute Deviation (PMAD) — Процент среднего абсолютного отклонения
  • Mean squared error (MSE) — Средняя квадратичная ошибка
  • Mean squared prediction error (MSPE) — средняя квадратичная ошибка прогноза
  • Root Mean squared error (RMSE) — Средняя квадратическая ошибка
  • Forecast skill (SS) — Прогноз компетенций
  • Average of Errors (E) — Среднее значение всех ошибок

Классификация методов и моделей прогнозирования

Я занимаюсь прогнозированием временных рядов уже более 5 лет. В прошлом году мною была защищена диссертация по теме «Модель прогнозирования временных рядов по выборке максимального подобия», однако вопросов после защиты осталось порядочно. Вот один из них — общая классификация методов и моделей прогнозирования.

Обычно в работах как отечественных, так и англоязычных авторы не задаются вопросом классификации методов и моделей прогнозирования, а просто их перечисляют. Но мне кажется, что на сегодняшний день данная область так разрослась и расширилась, что пусть самая общая, но классификация необходима. Ниже представлен мой собственный вариант общей классификации.

В чем разница между методом и моделью прогнозирования?

Метод прогнозирования представляет собой последовательность действий, которые нужно совершить для получения модели прогнозирования. По аналогии с кулинарией метод есть последовательность действий, согласно которой готовится блюдо — то есть сделается прогноз.

Модель прогнозирования есть функциональное представление, адекватно описывающее исследуемый процесс и являющееся основой для получения его будущих значений. В той же кулинарной аналогии модель есть список ингредиентов и их соотношение, необходимый для нашего блюда — прогноза.

Совокупность метода и модели образуют полный рецепт!

В настоящее время принято использовать английские аббревиатуры названий как моделей, так и методов. Например, существует знаменитая модель прогнозирования авторегрессия проинтегрированного скользящего среднего с учетом внешнего фактора (auto regression integrated moving average extended, ARIMAX). Эту модель и соответствующий ей метод обычно называют ARIMAX, а иногда моделью (методом) Бокса-Дженкинса по имени авторов.

Сначала классифицируем методы

Если посмотреть внимательно, то быстро выясняется, что понятие «метод прогнозирования» гораздо шире понятия «модель прогнозирования». В связи с этим на первом этапе классификации обычно делят методы на две группы: интуитивные и формализованные [1].

Если мы вспомним нашу кулинарную аналогию, то и там можно разделить все рецепты на формализованные, то есть записанные по количеству ингредиентов и способу приготовления, и интуитивные, то есть нигде не записанные и получаемые из опыта кулинара. Когда мы не пользуемся рецептом? Когда блюдо очень просто: пожарить картошку или сварить пельмени — тут рецепт не нужен. Когда еще мы не пользуемся рецептом? Когда желаем изобрести что-то новенькое!

Интуитивные методы прогнозирования имеют дело с суждениями и оценками экспертов. На сегодняшний день они часто применяются в маркетинге, экономике, политике, так как система, поведение которой необходимо спрогнозировать, или очень сложна и не поддается математическому описанию, или очень проста и в таком описании не нуждается. Подробности о такого рода методах можно глянуть в [2].

Формализованные методы — описанные в литературе методы прогнозирования, в результате которых строят модели прогнозирования, то есть определяют такую математическую зависимость, которая позволяет вычислить будущее значение процесса, то есть сделать прогноз.

На этом общая классификация методов прогнозирования на мой взгляд может быть закончена.

Далее сделаем общую классификация моделей

Здесь необходимо переходить к классификации моделей прогнозирования. На первом этапе модели следует разделить на две группы: модели предметной области и модели временных рядов.

Модели предметной области — такие математические модели прогнозирования, для построения которых используют законы предметной области. Например, модель, на которой делают прогноз погоды, содержит уравнения динамики жидкостей и термодинамики. Прогноз развития популяции делается на модели, построенной на дифференциальном уравнении. Прогноз уровня сахара крови человека, больного диабетом, делается на основании системы дифференциальных уравнений. Словом, в таких моделях используются зависимости, свойственные конкретной предметной области. Такого рода моделям свойственен индивидуальный подход в разработке.

Модели временных рядов — математические модели прогнозирования, которые стремятся найти зависимость будущего значения от прошлого внутри самого процесса и на этой зависимости вычислить прогноз. Эти модели универсальны для различных предметных областей, то есть их общий вид не меняется в зависимости от природы временного ряда. Мы можем использовать нейронные сети для прогнозирования температуры воздуха, а после аналогичную модель на нейронных сетях применить для прогноза биржевых индексов. Это обобщенные модели, как кипяток, в которые если бросить продукт, то он сварится вне зависимости от его природы.

Классифицируем модели временных рядов

Мне кажется, что составить общую классификацию моделей предметной области не представляется возможным: сколько областей, столько и моделей! Однако модели временных рядов легко поддаются простому делению [3]. Модели временных рядов можно разделить на две группы: статистические и структурные.

В статистических моделях зависимость будущего значения от прошлого задается в виде некоторого уравнения. К ним относятся:

  1. регрессионные модели (линейная регрессия, нелинейная регрессия);
  2. авторегрессионные модели (ARIMAX, GARCH, ARDLM);
  3. модель экспоненциального сглаживания;
  4. модель по выборке максимального подобия;
  5. и т.д.

В структурных моделях зависимость будущего значения от прошлого задается в виде некоторой структуры и правил перехода по ней. К ним относятся:

  1. нейросетевые модели;
  2. модели на базе цепей Маркова;
  3. модели на базе классификационно-регрессионных деревьев;
  4. и т.д.

Для обоих групп я указала основные, то есть наиболее распространенные и подробно описанные модели прогнозирования. Однако на сегодняшний день моделей прогнозирования временных рядов имеется уже громадное количество и для построения прогнозов, например, стали использовать SVM (support vector machine) модели, GA (genetic algorithm) модели и многие другие.

Общая классификация

Таким образом мы получили следующую классификацию моделей и методов прогнозирования.

Ссылки.

  1. Тихонов Э.Е. Прогнозирование в условиях рынка. Невинномысск, 2006. 221 с.
  2. Armstrong J.S. Forecasting for Marketing // Quantitative Methods in Marketing. London: International Thompson Business Press, 1999. P. 92 – 119.
  3. Jingfei Yang M. Sc. Power System Short-term Load Forecasting: Thesis for Ph.d degree. Germany, Darmstadt, Elektrotechnik und Informationstechnik der Technischen Universitat, 2006. 139 p.

UPD. 15.11.2016.
Господа, дошло до маразма! Недавно мне прислали на рецензию статью для ВАКовского издания со ссылкой на эту запись. Обращаю внимание, что ни в дипломах, ни в статьях, ни тем более в диссертациях ссылаться на блог нельзя! Если хотите ссылку, то используйте эту: Чучуева И.А. МОДЕЛЬ ПРОГНОЗИРОВАНИЯ ВРЕМЕННЫХ РЯДОВ ПО ВЫБОРКЕ МАКСИМАЛЬНОГО ПОДОБИЯ, диссертация… канд. тех. наук / Московский государственный технический университет им. Н.Э. Баумана. Москва, 2012.

Классификация методов и моделей прогнозирования

Я занимаюсь прогнозированием временных рядов уже более 5 лет. В прошлом году мною была защищена диссертация по теме «Модель прогнозирования временных рядов по выборке максимального подобия», однако вопросов после защиты осталось порядочно. Вот один из них — общая классификация методов и моделей прогнозирования.

Читать еще:  Анализ рентабельности расчет

Обычно в работах как отечественных, так и англоязычных авторы не задаются вопросом классификации методов и моделей прогнозирования, а просто их перечисляют. Но мне кажется, что на сегодняшний день данная область так разрослась и расширилась, что пусть самая общая, но классификация необходима. Ниже представлен мой собственный вариант общей классификации.

В чем разница между методом и моделью прогнозирования?

Метод прогнозирования представляет собой последовательность действий, которые нужно совершить для получения модели прогнозирования. По аналогии с кулинарией метод есть последовательность действий, согласно которой готовится блюдо — то есть сделается прогноз.

Модель прогнозирования есть функциональное представление, адекватно описывающее исследуемый процесс и являющееся основой для получения его будущих значений. В той же кулинарной аналогии модель есть список ингредиентов и их соотношение, необходимый для нашего блюда — прогноза.

Совокупность метода и модели образуют полный рецепт!

В настоящее время принято использовать английские аббревиатуры названий как моделей, так и методов. Например, существует знаменитая модель прогнозирования авторегрессия проинтегрированного скользящего среднего с учетом внешнего фактора (auto regression integrated moving average extended, ARIMAX). Эту модель и соответствующий ей метод обычно называют ARIMAX, а иногда моделью (методом) Бокса-Дженкинса по имени авторов.

Сначала классифицируем методы

Если посмотреть внимательно, то быстро выясняется, что понятие «метод прогнозирования» гораздо шире понятия «модель прогнозирования». В связи с этим на первом этапе классификации обычно делят методы на две группы: интуитивные и формализованные [1].

Если мы вспомним нашу кулинарную аналогию, то и там можно разделить все рецепты на формализованные, то есть записанные по количеству ингредиентов и способу приготовления, и интуитивные, то есть нигде не записанные и получаемые из опыта кулинара. Когда мы не пользуемся рецептом? Когда блюдо очень просто: пожарить картошку или сварить пельмени — тут рецепт не нужен. Когда еще мы не пользуемся рецептом? Когда желаем изобрести что-то новенькое!

Интуитивные методы прогнозирования имеют дело с суждениями и оценками экспертов. На сегодняшний день они часто применяются в маркетинге, экономике, политике, так как система, поведение которой необходимо спрогнозировать, или очень сложна и не поддается математическому описанию, или очень проста и в таком описании не нуждается. Подробности о такого рода методах можно глянуть в [2].

Формализованные методы — описанные в литературе методы прогнозирования, в результате которых строят модели прогнозирования, то есть определяют такую математическую зависимость, которая позволяет вычислить будущее значение процесса, то есть сделать прогноз.

На этом общая классификация методов прогнозирования на мой взгляд может быть закончена.

Далее сделаем общую классификация моделей

Здесь необходимо переходить к классификации моделей прогнозирования. На первом этапе модели следует разделить на две группы: модели предметной области и модели временных рядов.

Модели предметной области — такие математические модели прогнозирования, для построения которых используют законы предметной области. Например, модель, на которой делают прогноз погоды, содержит уравнения динамики жидкостей и термодинамики. Прогноз развития популяции делается на модели, построенной на дифференциальном уравнении. Прогноз уровня сахара крови человека, больного диабетом, делается на основании системы дифференциальных уравнений. Словом, в таких моделях используются зависимости, свойственные конкретной предметной области. Такого рода моделям свойственен индивидуальный подход в разработке.

Модели временных рядов — математические модели прогнозирования, которые стремятся найти зависимость будущего значения от прошлого внутри самого процесса и на этой зависимости вычислить прогноз. Эти модели универсальны для различных предметных областей, то есть их общий вид не меняется в зависимости от природы временного ряда. Мы можем использовать нейронные сети для прогнозирования температуры воздуха, а после аналогичную модель на нейронных сетях применить для прогноза биржевых индексов. Это обобщенные модели, как кипяток, в которые если бросить продукт, то он сварится вне зависимости от его природы.

Классифицируем модели временных рядов

Мне кажется, что составить общую классификацию моделей предметной области не представляется возможным: сколько областей, столько и моделей! Однако модели временных рядов легко поддаются простому делению [3]. Модели временных рядов можно разделить на две группы: статистические и структурные.

В статистических моделях зависимость будущего значения от прошлого задается в виде некоторого уравнения. К ним относятся:

  1. регрессионные модели (линейная регрессия, нелинейная регрессия);
  2. авторегрессионные модели (ARIMAX, GARCH, ARDLM);
  3. модель экспоненциального сглаживания;
  4. модель по выборке максимального подобия;
  5. и т.д.

В структурных моделях зависимость будущего значения от прошлого задается в виде некоторой структуры и правил перехода по ней. К ним относятся:

  1. нейросетевые модели;
  2. модели на базе цепей Маркова;
  3. модели на базе классификационно-регрессионных деревьев;
  4. и т.д.

Для обоих групп я указала основные, то есть наиболее распространенные и подробно описанные модели прогнозирования. Однако на сегодняшний день моделей прогнозирования временных рядов имеется уже громадное количество и для построения прогнозов, например, стали использовать SVM (support vector machine) модели, GA (genetic algorithm) модели и многие другие.

Общая классификация

Таким образом мы получили следующую классификацию моделей и методов прогнозирования.

Ссылки.

  1. Тихонов Э.Е. Прогнозирование в условиях рынка. Невинномысск, 2006. 221 с.
  2. Armstrong J.S. Forecasting for Marketing // Quantitative Methods in Marketing. London: International Thompson Business Press, 1999. P. 92 – 119.
  3. Jingfei Yang M. Sc. Power System Short-term Load Forecasting: Thesis for Ph.d degree. Germany, Darmstadt, Elektrotechnik und Informationstechnik der Technischen Universitat, 2006. 139 p.

UPD. 15.11.2016.
Господа, дошло до маразма! Недавно мне прислали на рецензию статью для ВАКовского издания со ссылкой на эту запись. Обращаю внимание, что ни в дипломах, ни в статьях, ни тем более в диссертациях ссылаться на блог нельзя! Если хотите ссылку, то используйте эту: Чучуева И.А. МОДЕЛЬ ПРОГНОЗИРОВАНИЯ ВРЕМЕННЫХ РЯДОВ ПО ВЫБОРКЕ МАКСИМАЛЬНОГО ПОДОБИЯ, диссертация… канд. тех. наук / Московский государственный технический университет им. Н.Э. Баумана. Москва, 2012.

Основные методы прогнозирования (стр. 1 из 7)

Основные методы прогнозирования

1. Прогнозирование и виды прогнозов

2. Методы прогнозирования

3. Статистическое прогнозирование

4. Прогнозирование на основе сезонных колебаний

5. Экспертное прогнозирование

6. Прогнозирование сбыта

7. Информация, полученная в магазинах конкурентов

8. Поставщики и закупочные центры

Актуальность темы обусловлена тем, что для большинства российских предприятий маркетинговое управление становится одним из условий выживания и успешного функционирования. При этом обеспечение эффективности такого управления требует умения предвидеть вероятное будущее состояние предприятия и среды, в которой оно существует, вовремя предупредить возможные сбои и срывы в работе.. Это достигается с помощью прогнозирования как плановой, так и практической работы предприятия по всем направлениям его деятельности, и в частности, в области прогнозирования сбыта продукции (товаров, работ, услуг).

Читать еще:  Динамический анализ это

Многообразие проблем, возникающих при обеспечении жизнедеятельности предприятия и являющихся предметом прогнозирования, приводит к появлению большого количества разнообразных прогнозов, разрабатываемых на основе определенных методов прогнозирования. Поскольку современная экономическая наука располагает большим количеством разнообразных методов прогнозирования, каждый менеджер и специалист по планированию должен овладеть навыками прикладного прогнозирования, а руководитель, ответственный за принятие стратегических решений, должен к тому же уметь сделать правильный выбор метода прогнозирования.

Цель работы: рассмотреть прогнозирование сбыта. Исходя из поставленной цели, в данной работы сформулированы задачи, среди них:

сущность основных понятий в области прогнозирования;

признаки классификации, виды прогнозов и их краткая характеристика;

методы прогнозирования (рассмотрены, по возможности, на конкретных примерах);

рекомендации, позволяющие сделать прогнозы полезными;

возможное содержание плана сбыта и этапов его разработки.

1. Прогнозирование и виды прогнозов

Прогнозирование (греч. Prognosis — знание наперед) — это род предвидения (предсказания), поскольку имеет дело с получением информации о будущем. Предсказание «предполагает описание возможных или желательных аспектов, состояний, решений, проблем будущего. Помимо формального, основанного на научных методах прогнозирования, к предсказанию относятся предчувствие и предугадывание. Предчувствие — это описание будущего на основе эрудиции, работы подсознания. Предугадывание использует житейский опыт и знание обстоятельств». В широком плане как научное прогнозирование, так и предчувствие и предугадывание входят в понятие “прогнозирование деятельности предприятия».

Прогноз — это результат процесса прогнозирования, выраженный в словесной, математической, графической или другой форме суждения о возможном состоянии объекта (в частности предприятия) и его среды в будущий период времени.

Выделяются различные признаки классификации прогнозов. Мы воспользуемся подходом, разработанным в Финансовой академии при Правительстве РФ и на его основе составим следующую классификационную таблицу.

Признаки классификации прогнозовВиды прогнозов
Временной охват (горизонт прогнозирования)краткосрочные,среднесрочные,долгосрочные
Типы прогнозированияпоисковые,нормативные,основанные на творческом видении
Степень вероятности будущих событийвариантные,инвариантные
Способ представления результатов прогнозаточечные,интервальные

Для конкретных прогнозов могут применяться и другие признаки классификации прогнозов. Например, для прогноза рыночной конъюнктуры важно выделить такой признак, как охват объектов исследования — в зависимости от него прогноз может быть глобальным, региональным, локальным (системным). Иначе говоря, он может охватывать весь рынок страны или ограничиваться рынком определенного региона, он может также охватывать локальный рынок отдельного предприятия. Он может рассматривать рыночную ситуацию в целом или же его предметом будет рынок отдельного товара.

Ниже дана характеристика каждого из перечисленных в табл.1 видов прогнозов.

В зависимости от горизонта прогнозирования прогноз может разрабатываться на очень короткий период времени — до месяца (например, недельные и месячные прогнозы объемов продаж, движения наличности), на год, а также на 2-3 года (среднесрочный прогноз), 5 и более лет (долгосрочный прогноз).

Долгосрочные прогнозы называют также перспективными. Нередко пятилетние прогнозы относят к среднесрочным.

По типам прогнозирования выделяют поисковые, нормативные и основанные на творческом видении прогнозы.

Поисковое прогнозирование — способ научного прогнозирования от настоящего к будущему: прогнозирование начинается от сегодняшнего дня, опирается на имеющуюся информацию и постепенно проникает в будущее.

Существуют два вида поискового прогнозирования:

Экстраполятивный подход предполагает, что экономическое и прочее развитие происходит гладко и непрерывно, поэтому прогноз может быть простой проекцией (экстраполяцией) прошлого в будущее. Для составления такого прогноза необходимо вначале оценить прошлые показатели деятельности предприятия и тенденции их развития (тренды), затем перенести эти тенденции в будущее.

Экстраполятивный подход очень широко применяется в прогнозировании и так или иначе отражается в большинстве методов прогнозирования.

Альтернативный подход базируется на том, что внешняя и внутренняя среда бизнеса подвержена постоянным изменениям, вследствие чего: развитие предприятия происходит не только гладко и непрерывно, но и скачкообразно и прерывисто; существует определенное число вариантов будущего развития предприятия.

Исходя из этого, в рамках альтернативного подхода:

во-первых, альтернативное прогнозирование может объединять в единой логике два способа развития предприятия — гладкий и скачкообразный, создавая синтетическую картину будущего;

во-вторых, создаются прогнозы, включающие сочетание различных вариантов развития выбранных показателей и явлений. При этом каждый из вариантов развития лежит в основе особого сценария будущего.

Альтернативный подход сравнительно молод (стал широко применяться в 80-е годы) и в настоящее время быстро распространяется в практике внутрифирменного планирования.

Оба вида поискового прогнозирования опираются как на количественные, так и на качественные методы прогнозирования.

Нормативное (нормативно-целевое) прогнозирование предполагает:

во-первых, определение общих целей и стратегических ориентиров предприятия на будущий период;

во-вторых, оценку развития предприятия, исходя из этих целей.

Нормативное прогнозирование применяется чаще всего тогда, когда предприятие не располагает необходимыми историческими данными. В силу этого оно опирается на качественные методы исследования и, как и экстраполятивное, является в большой степени традиционным подходом к предсказанию будущей среды предприятия.

Прогнозирование, основанное на творческом видении будущего, — использует субъективное знание прогнозиста, его интуицию.

Прогнозы такого рода часто имеют формы “утопий” или “антиутопий” — литературных описаний вымышленного будущего. Несмотря на кажущуюся отдаленность от мира экономики, подобные произведения являются хорошим дополнением к сухому количественному прогнозу.

Данный вид прогнозирования может использоваться для непосредственного предсказания будущих результатов деятельности предприятия.

В зависимости от степени вероятности будущих событий прогнозы делятся на вариантные и инвариантные.

Инвариантный прогноз предполагает только один вариант развития будущих событий. Он возможен в условиях высокой степени определенности будущей среды. Как правило, такой прогноз базируется на экстраполятивном подходе (простом продолжении сложившейся тенденции и в будущем).

Вариантный прогноз основывается на предположении о значительной неопределенности будущей среды и, следовательно, наличии нескольких вероятных вариантов развития.

Каждый из вариантов развития учитывает специфическое состояние будущей среды предприятия и, исходя из этого, определяет основные параметры данного бизнеса. Такого рода вариант будущего состояния предприятия называют сценарием.

По способу представления результатов прогнозы делятся на точечные и интервальные.

Точечный прогноз исходит из того, что данный вариант развития включает единственное значение прогнозируемого показателя, например, среднедневной товарооборот в следующем месяце возрастет на 5%.

Интервальный прогноз — это такое предсказание будущего, в котором предполагается некоторый интервал, диапазон значений прогнозируемого показателя, например: среднедневной товарооборот в следующем месяце возрастет на 5-8%.

2. Методы прогнозирования

Для понимания сущности данного вопроса необходимо предварительно дать определения некоторых понятий, в частности, таких, как: метод, методика, методология.

В широком смысле слова – метод (гр. methodos) — это: 1) способ познания, исследования явлений природы и общественной жизни; 2) прием или система приемов в какой-либо деятельности.

Применительно к экономической науке и практике — метод — это: 1) система правил и приемов подхода к изучению явлений и закономерностей природы, общества и мышления; 2) путь, способ достижения определенных результатов в познании и практике; 3) прием теоретического исследования или практического осуществления чего-нибудь, исходящий из знания закономерностей развития объективной действительности и исследуемого предмета, явления, процесса.

Ссылка на основную публикацию
ВсеИнструменты 220 Вольт
Adblock
detector