Инструменты математического анализа
Учебники. Математический анализ.
Добрый день 🙂
Я живу на этой планете почти 21 год, заканчиваю бакалавриат физтеха МИФИ и уже долгое время занимаюсь репетиторством.
Продолжаю тему учебников для института. В этом посте рассмотрю более подробно математический анализ. 1 курс.
Первый человек в матанализе, с которым должен познакомиться каждый первокурсник — Борис Павлович Демидович.
Его задачник( https://drive.google.com/file/d/1UXYijBUL9cxwvGn-158HidKf3uc. ) был переведен на множество языков и используется повсеместно.
В нем рассмотрены практический все задачи, которые вообще могут пригодиться учащимся — углубленное дифференцирование и интегрирование (в том числе и от нескольких переменных), подробное рассмотрение пределов и рядов. Одним словом — огромный торт применения матана. Четырьмя словами.
Есть решебник. Насколько я понял, вконтакте есть и русская версия, но ее я никогда не трогал. В китайском подглядывали несколько сумасшедших задач — получалось все правильно.
Вторые два имени — Лев Дмитриевич Кудрявцев ( https://alleng.org/d/math/math98.htm ) и товарищ Фихтенгольц( https://nashol.com/2017052594676/osnovi-matematicheskogo-ana. ). Их многотомники по теории математического анализа я считаю максимально полезными для изучения предмета, они примерно одинаково удобоваримы и понятны. Но лучше и лекции не прогуливать, конечно 🙂
1) Введение в матанализ.
Первое, с чем сталкиваются учащиеся — кванторы и различная новая символика. На этих символах построена вся база определений — кванторы упрощают записи слов. Здесь советы особо не требуются — для понимания предмета кванторы нужно знать, все знаки в задачах и определениях также нужно знать и понимать отличие между эпсилон-окрестностью и проколотой эпсилон-окрестностью. Вопрос простой, а незнание может привести к неприятностям.
Наверняка у многих будут всякие разные коллоквиумы, поэтому с пониманием темы рекомендую не затягивать. Матан — наука, требующая перестройки ума, а на это необходимо время. Разбирайтесь!
2) Пределы.
«Что?! На ноль делить можно?»
Пределы — тема вечная. Что к чему стремится и каким образом это достигается. Сначала студентов долго мурыжат огромными пределами, заставляя упрощать или сводить к Замечательным пределам, затем страдающему дают — О, чудо! — правило Лопиталя. И все, студент неуязвим.
В этом разделе важно уметь видеть Замечательные пределы, которые часто не очевидны, чтобы не наделать ошибок, и очень важно знать и понимать определение предела по Коши — с помощью него дается понимание самого предела. Когда это определение станет понятно, то в голове сразу заиграет «елки-палки, да это же очевидно!».
Вообще Коши — один из моих кумиров. Этот человек сделал столько для науки, сколько сейчас не делает весь мир.
Помимо Демидовича я бы советовал порешать пределы у Бермана( https://www.google.ru/url?sa=t&rct=j&q=&esrc=s&a. ). У него есть и интересные пределы, и интересные вопросы — без знаний уйти не удастся. В то же время у него есть очень простые задачки, чтобы влиться.
И помните — на ноль делить можно только в пределе.
3) Производная и дифференцирование.
После пределов через появляется дифференцирование — одновременное изобретение Ньютона и Лейбница, которое они делили до конца жизни ( https://ru.wikipedia.org/wiki/Спор_Ньютона_и_Лейбница_о_прио. ).
Производная — это счастье. Например, многие интегралы берутся очень сложно или даже не берутся вообще — производную можно взять всегда, поэтому самое важное — быть очень аккуратным и учить таблицу производных. И решать, решать, решать, брать километровые производные, чтобы в будущем применять и не сомневаться (применять придется много).
Если ничего не путаю, здесь же появится вишенка на торт дифференцирования — формула Тейлора. Эта вещь спасает жизнь, когда, казалось бы, проще умереть, чем решить. Используется довольно часто.
Кстати, применять приближения Тейлора начинают еще с пределов, но там это сведено до сухой сути типа tgx
x.
Остаточный член — не игрушка. Не отбрасывайте!
4) Интегрирование.
Решить задачу с анизотропностью? Найти объем банана? Все возможно, если с вами интеграл!
Интегрирование — вещь темная. Если сходу видно как можно взять интеграл — счастливый случай. В большинстве случаев придется крутить интеграл вокруг да около или искать иные методы, которых очень много.
Что важно — перестроить голову после дифференцирования (на sin и cos особенно путаются) и учить таблицу и методы. Чем больше методов знает учащийся, тем ему проще (но это ни в коем случае не делает его умнее).
Помню, на первом курсе писали контрольную по интегралам. Мне остался один, но я забыл к нему метод. Я крутил-вертел его полчаса на двух листах, но взял! Преподаватель тогда мне слегка занизил балл за это извращение, но это все равно была победа. Желаю всем своих собственных побед 🙂
Здесь же появится великолепная теорема о среднем, которая спасет некоторых от интеграла Пуассона при решении физических задач (но не всех).
В 3 и 4 пункте советую также книгу Фихтенгольца «Дифференциальное и интегральное счисление».
Когда начнется выяснение сходимости, нужно быть таким же аккуратным, как и при вычислении предела. Чем больше признаков сходимости знает учащийся — тем ему проще в той или иной задаче. Но в особо высокие мотивы уходить тоже не надо.
Все эти признаки будут рассказаны. Я хочу обратить внимание на признак Ермакова — он так и не был доказан, хотя вроде бы работает и в некоторых изощренных случаях вполне упрощает жизнь. Страждущему уму рекомендую обратить внимание.
Из постоянно используемых методов рекомендую обратить внимание на признак Абеля — он очень красив, на мой взгляд.
И не забывайте про константу интегрирования! 🙂
Рискну посоветовать обратить внимание на сайты, где за Вас программа возьмет интеграл. Злоупотреблять не надо, но проверять себя можно. А если студент начнет осваивать великий Маткад — ууу.
5) Ряды.
В жизни практически любого ученого нельзя убежать от двух фамилий — Коши и Фурье. И именно ряды Фурье повсеместно встречаются.
При изучении рядов очень пригодится повторение формулы по нахождению суммы бесконечно убывающего ряда.
Ряды — вещь простая и приятная. Обратите внимание, для каждого ряда есть свой признак, не нужно смешивать (я про знакопеременные или знакопостоянные ряды, например).
Плюс к задачнику Бермана смею порекомендовать также задачник Гюнтера — https://www.studmed.ru/gyunter-nm-kuzmin-ro-sbornik-zadach-p.
У него есть и матан, и диффуры, и немножко ангема и даже кусочек физики. Абсолютно адекватный задачник без лишних изысков или чрезмерной простоты.
Далее у кого-то начнется теория поля (градиент, ротор, дивергенция), у кого-то теория групп(гомоморфизм), но это уже совсем другая история 🙂
В матане главное очень много решать, набивать руку, чтобы в дальнейшем выполнять большую часть операций на автомате, не тратя лишних сил. Для этого нужно взять сто интегралов, посчитать сто производных и доказать сходимость ста рядов. 🙂
В конце хочется дать очень простой совет — разбирайтесь. Не отвечайте по принципу «потому что Танька так сказала» или «не знаю, у меня так записано». Каждая операция и каждый символ должен быть на своем месте и с конкретной целью. Иначе обучение пройдет мучительно и абсолютно бестолково.
Математика для Data Scientist: необходимые разделы
Математика — это краеугольный камень Data Science. Хотя некоторые теоремы, аксиомы и формулы кажутся слишком абстрактными и далекими от практики, на самом деле без них невозможно по-настоящему глубоко анализировать и систематизировать огромные массивы данных.
Для специалиста Data Science важны следующие направления математики:
- статистика;
- теория вероятностей;
- математический анализ;
- линейная алгебра.
В предыдущей статье «Data Science: книги для начального уровня» специалисты Plarium Krasnodar рекомендовали литературу по программированию на Python, а также по визуализации результатов и machine learning. В этой статье они предлагают подборку материалов и книг по математике, полезных в Data Science.
Статистика и теория вероятностей
Сложно переоценить важность знания статистики для Data Scientist любого уровня. Все классическое machine learning основано на statistical learning. Более того, на нем же основываются стандартные A/B-тесты.
Источники для вдохновения:
All of Statistics
Larry Wasserman
Как пишет сам автор: «This book is for people who want to learn probability and statistics quickly».
В книге даются все основные положения теории вероятностей и статистики.
Основы статистики (3 части)
Образовательная платформа Stepik
Курс по статистике для новичков. Охватывает все элементарные понятия.
Statistics Fundamentals Succinctly Katharine
Alexis Kormanik
В предыдущей статье уже была рекомендована эта книга, но повторить будет не лишним. 🙂
В первых разделах приведены основные определения с иллюстрациями и комментариями, в последних раскрывается значимость T- и Z-тестов. Материалы изложены доступным языком, с минимально необходимым математическим аппаратом. Это руководство — отличное введение в статистику с точки зрения практики.
Теория вероятностей и математическая статистика
Н. Ш. Кремер
Учебник ориентирован на экономистов, поэтому сложность и глубина понятий не шокирует новичка в Data Science. Подходит для изучения основ перед погружением в профильную литературу.
Теория вероятностей и математическая статистика
А. И. Кибзун, Е. Р. Горяинова, А. В. Наумов, А. Н. Сиротин
Этот базовый курс дает более глубокие представления, чем предыдущий. Кроме
теории включает практические задания и справочные материалы.
Основные понятия теории вероятностей и математической статистики
М. Я. Кельберт, Ю. М. Сухов
Прекрасный вариант для тех, кто уже хорошо знаком с темой и хочет получить более глубокие знания.
Математический анализ
На первый взгляд это направление необходимо больше в стенах университетов, однако без него не удастся разобраться с backpropagation или качественно освоить курс по deep learning.
Восполнив пробелы в статистике, самое время приступить к изучению материалов по этому разделу. А их превеликое множество.
Курс от Массачусетского технологического института, состоящий из 3 частей:
- Calculus 1A: Differentiation — курс о нахождении производной, ее геометрической интерпретации и физическом смысле.
- Calculus 1B: Integration — курс о нахождении интеграла, его связи с производной и применении в инженерном проектировании, научном анализе, теории вероятностей и статистике.
- Calculus 1C: Coordinate Systems & Infinite Series — курс об исчислении кривых, системах координат, приближении функций к полиномам и бесконечных рядах. Все это необходимо для построения математических моделей реального мира.
Calculus One
Образовательная платформа Coursera
Курс ориентирован на новичков, но удобная подача материала поможет освежить память и бывалым Data Scientist.
Khan Academy
Образовательная платформа
Разнообразные материалы, представленные на ресурсе, отлично подойдут для старта изучения математики, программирования и информатики.
Calculus
James Stewart
Книга славится тщательно проработанным содержанием и довольно простым языком.
Курс математического анализа
Л. Д. Кудрявцев
Для тех, кто хочет получить более фундаментальные знания о дифференциальных и интегральных исчислениях, теории рядов, функциональном и гармоническом анализе.
Также можно обратить внимание на два курса от MIT:
- Single Variable Calculus — курс для самостоятельного изучения дифференцирования, интегральных исчислений и бесконечных рядов.
- Multivariable Calculus — еще один курс для самостоятельного изучения дифференцирования, а также интегрального и векторного исчислений функций нескольких переменных.
Линейная алгебра
Без этого раздела математики не получится разработать методы machine learning, смоделировать поведение различных объектов или оптимизировать процесс кластеризации и уменьшения размерности описания данных.
Linear Algebra
Georgi E. Shilov
В учебнике изложен прекрасно проработанный материал. Книга подойдет для изучения вводного курса в линейную алгебру.
Линейная алгебра
В. А. Ильин, Э. Г. Позняк
Этот учебник был написан на базе лекций преподавателей физического факультета МГУ. Все материалы изложены доступным языком и подойдут для глубокого изучения основных теорий линейной алгебры.
И напоследок еще одна рекомендация — учебный курс Linear Algebra от MIT. Он раскрывает теорию матриц и положения линейной алгебры.