Invest-currency.ru

Как обезопасить себя в кризис?
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

6 функций денег

Математические основы оценочной деятельности. Шесть функций денежной единицы

Итак, для определения стоимости собственности, приносящей до ход, необходимо определить текущую стоимость денег, которые будут получены через какоето время в будущем.

Известно, а в условиях инфляции куда более очевидно, что деньги изменяют свою стоимость с течением времени. Основными операциями, позволяющими сопоставить разновременные деньги, являются операции накопления (наращивания) и дисконтирования.

Накопление – это процесс приведения текущей стоимости денег к их будущей стоимости, при условии, что вложенная сумма удерживается на счету в течение определенного времени, принося периодически нака пливаемый процент.

Дисконтирование – это процесс приведения денежных поступлений от инвестиций к их текущей стоимости.

В оценке эти финансовые расчеты базируются на сложном процессе, когда каждое последующее начисление ставки процента осуществля ется как на основную сумму, так и на начисленные за предыдущие периоды невыплаченные проценты.

Всего рассматривают шесть функций денежной единицы, основанных на сложном проценте. Для упрощения расчетов разработаны таблицы шести функций для известных ставок дохода и периода накопления ( I и n ), кроме того, можно воспользоваться финансовым калькуля тором для расчета искомой величины.

1 функция: Будущая стоимость денежной единицы (накопленная сумма денежной единицы), ( fvf , i , n ).

Если начисления осуществляются чаще, чем один раз в год, то формула преобразуется в следующую:

k – частота накоплений в год.

Данная функция используется в том случае, когда известна текущая стоимость денег и необходимо определить будущую стоимость де нежной единицы при известной ставке доходов на конец определенного периода ( n ).

Для примерного определения срока удвоения капитала (в годах) необходимо 72 разделить на целочисленное значение годовой ставки до хода на капитал. Правило действует для ставок от 3 до 18%.

Типичным примером для будущей стоимости денежной единицы может служить задача.

Определить, какая сумма будет накоплена на счете к концу 3го

года, если сегодня положить на счет, приносящий 10% годовых, 10 000

FV=10000[(1+0,1) 3 ]=13310.

2 функция : Текущая стоимость единицы (текущая стоимость реверсии (перепродажи)), ( pvf , i , n ).

Текущая стоимость единицы является обратной относительно бу дущей стоимости.

Если начисление процентов осуществляется чаще, чем один раз в год, то

Примером задачи может служить следующая: Сколько нужно вложить сегодня, чтобы к концу 5го года получить на счете 8000, если годовая ставка дохода 10%.

3 функция : Текущая стоимость аннуитета ( pvaf , i , n ).

Аннуитет – это серия равновеликих платежей (поступлений), отстоящих друг от друга на один и тот же промежуток времени.

Выделяют обычный и авансовый аннуитеты. Если платежи осуще ствляются в конце каждого периода, то аннуитет обычный, если в начале – авансовый.

Формула текущей стоимости обычного аннуитета:

PMT – равновеликие периодические платежи. Если частота начислений превышает 1 раз в год, то

Формула текущей стоимости авансового аннуитета:

Договор аренды дачи составлен на 1 год. Платежи осуществляются ежемесячно по 1000 рублей. Определить текущую стоимость аренд ных платежей при 12% ставке дисконтирования, если а) платежи осуществляются в конце месяца; б) платежи осуществляются в начале каждого месяца.

4 функция : Накопление денежной единицы за период ( fvfa , i , n ).

В результате использования данной функции определяется буду щая стоимость серии равновеликих периодических платежей (поступле ний).

Платежи также могут осуществляться в начале и в конце периода.

Формула обычного аннуитета:

Определить сумму, которая будет накоплена на счете, приносящем 12% годовых, к концу 5го года, если ежегодно откладывать на счет 10 000 рублей а) в конце каждого года; б) в начале каждого года.

5 функция : Взнос на амортизацию денежной единицы ( iaof , i , n ) Функция является обратной величиной текущей стоимости обыч ного аннуитета. Взнос на амортизацию денежной единицы используется для определения величины аннуитетного платежа в счет погашения кредита, выданного на определенный период при заданной ставке по креди ту.

Амортизация – это процесс, определяемый данной функцией, включает проценты по кредиту и оплату основной суммы долга.

При платежах, осуществляемых чаще, чем 1 раз в год используется следующая формула:

Примером может служить следующая задача: Определить, каким должны быть платежи, чтобы к концу 7го года погасить кредит в 100 000 рублей, выданный под 15% годовых.

6 функция : Фактор фонда возмещения ( sff , i , n )

Данная функция обратна функции накопления единицы за период. Фактор фонда возмещения показывает аннуитетный платеж, который необходимо депонировать под заданный процент в конце каждого пе риода для того, чтобы через заданное число периодов получить искомую сумму.

Для определения величины платежа используется формула:

При платежах (поступлениях), осуществляемых чаще, чем 1 раз в год:

Примером может служить задача.

Определить, какими должны быть платежи, чтобы к концу 5го го да иметь на счете, приносящем 12% годовых, 100 000 рублей. Платежи осуществляются в конце каждого года.

Аннуитетный платеж, определяемый данной функцией, включает выплату основной суммы без выплат процента.

6 функций денег

Временна́я це́нность де́нег (ВЦД) или стоимость денег во времени (СДВ), стоимость денег с учетом фактора времени (СДУФВ), теория временной стоимости денег, дисконтированная существующая ценность — концепция, на которой основано предположение о том, что деньги должны приносить процент — ценность сегодняшних денег выше, чем ценность той же суммы, получаемой в будущем.

Временна́я це́нность де́нег — одно из фундаментальных понятий финансов. Временна́я ценность денег основана на предпосылке, что каждый предпочтёт получить определенную сумму денег сегодня, чем то же самое количество в будущем, если все остальное одинаково. В результате, когда каждый вносит деньги на счёт в банк, каждый требует (и зарабатывает) проценты. Деньги, полученные сегодня, более ценны, чем деньги, полученные в будущем количеством процентов, который деньги могут заработать. Если 90 сегодняшних рублей через год увеличатся до 100 рублей, то эти 100 рублей, подлежащие выплате через год, сегодня стоят 90 рублей.

«Золотое» правило бизнеса гласит:

Сумма, полученная сегодня, больше той же суммы, полученной завтра.

Согласно принципу временно́й ценности денег, сегодняшние поступления ценнее будущих. Отсюда вытекает, по крайней мере, два важных следствия:

необходимость учёта фактора времени при проведении финансовых операций;

некорректность (с точки зрения анализа долгосрочных финансовых операций) суммирования денежных величин, относящихся к разным периодам времени.

Сложным процентом принято называть эффект, когда проценты прибыли прибавляются к основной сумме и в дальнейшем сами участвуют в создании новой прибыли.

При расчете суммы будущей стоимости (Sc) применяется формула:

Соответственно, сумма сложного процента определяется:

где Ic — сумма сложных процентов за установленный период времени; Р — первоначальная стоимость денег; n — количество периодов, по которым осуществляется расчет процентных платежей; i — используемая процентная ставка, выраженная в долях единицы.

Формулы расчета сложных процентов являются базовыми в финансовых вычислениях. Экономический смысл множителя (1 + i )n состоит в том, что он показывает, чему будет равен один рубль через nпериодов при заданной процентной ставке i. Для упрощения процедуры расчетов разработаны специальные финансовые таблицы для расчета сложных процентов, которые позволяют определить будущую и настоящую стоимость денег.

Настоящая стоимость денег (Рс) при начислении сложных процентов равна:

Сумма дисконта (Dc) определяется:

При расчете временной стоимости денег в условиях применения сложных процентов необходимо иметь в виду, что на результаты оценки влияет не только процентная ставка, но и число интервалов выплат в течение всего платежного периода, что приводит к тому, что в ряде случаев более выгодно инвестировать деньги под меньшую ставку, но с большим количеством выплат в течение платежного периода.

Чистая приведённая стоимость (чистая текущая стоимость, чистый дисконтированный доход, англ. Net present value, принятое в международной практике анализа инвестиционных проектов сокращение — NPV или ЧДД) — это сумма дисконтированных значений потока платежей, приведённых к сегодняшнему дню. Показатель NPV представляет собой разницу между всеми денежными притоками и оттоками, приведенными к текущему моменту времени (моменту оценки инвестиционного проекта). Он показывает величину денежных средств, которую инвестор ожидает получить от проекта, после того, как денежные притоки окупят его первоначальные инвестиционные затраты и периодические денежные оттоки, связанные с осуществлением проекта. Поскольку денежные платежи оцениваются с учетом их временной стоимости и рисков, NPV можно интерпретировать, как стоимость, добавляемую проектом. Ее также можно интерпретировать как общую прибыль инвестора. В пользу такой интерпретации говорит то, что отношение NPV к совокупной величине дисконтированных инвестиционных затрат называется Индекс прибыльности (англ. Profitability Index или сокращенно PI).

Иначе говоря, для потока платежей CF (Cash Flow), где CFt — платёж через t лет (t = 1. N) и начальной инвестиции IC (Invested Capital) в размере IC = − CF0 чистый дисконтированный доход NPV рассчитывается по формуле:

где i — ставка дисконтирования.

Шесть функций сложного процента

Таблица для визуального восприятия. Сами формулы смотреть ниже.

Первая функция – будущая стоимость денежной единицы.

Это фактор, используемый для расчета стоимости денежной единицы при условии, что последняя будет удерживаться в течение определенного времени, принося периодически накапливаемый процент.

Будущая стоимость денежной единицы рассчитывается по формуле:

Вторая функция – будущая стоимость аннуитета.

Многие финансовые операции имеют вид не разовых платежей, а серии регулярных выплат/доходов – арендные взносы, погашения долгосрочного кредита, получение процентов по облигациям, платежи в пенсионный фонд и т.д. Если эти платежи происходят через строго определенные промежутки времени, то такая серия называется аннуитетом. Аннуитет – серия платежей, разделенных одинаковыми временными периодами.

Платежом (взносом) называется единовременный вклад (доход), производимый в каждом временном периоде. Он обозначается через РМТ (от англ. payment – платеж). Если платеж делается в конце платежного периода, он называется обычным, а если в начале – авансовым. Чаще на практике встречается обычный платеж.

Формула будущей стоимости единичного аннуитета, как сумма членов геометрической прогрессии имеет вид:

Эту формулу также называют фондом накопления капитала, т.к. она показывает накопленную к концу n — го периода денежную сумму, при условии вложения в каждом периоде одной денежной единицы под i процентов.

Третья функция – фактор фонда возмещения капитала.

Часто необходимо знать, какой платеж нужно периодически вносить, чтобы к концу n — го периода времени накопить заданную сумму. Эта задача решается с помощью фактора фонда возмещения капитала SFF1.

Фактором фонда возмещения называется величина периодического платежа, которая обеспечивает в течение n периодов при заданной ставке процента накопление денежной суммы капитала равной одной денежной единице.

Четвертая функция – текущая стоимость денежной единицы.

Текущая (в настоящий момент времени) реальная стоимость одной денежной единицы ( PV 1), получаемой в конце n — го периода времени при известной доходности i , находится из формулы:

Пятая функция – текущая стоимость единичного аннуитета.

Часто бывает так, что необходимо текущую стоимость серии платежей, т.е. аннуитета. Например, решается вопрос об инвестировании некоторой суммы денег в актив, который будет приносить регулярный доход. Приобретать актив целесообразно в том случае, если текущая стоимость будущих доходов будет не меньше стоимости актива. Логика получения пятой функции сложного процента видна из формулы:

Шестая функция – взнос на амортизацию капитала.

Эта функция применяется для определения величины платежа при амортизации кредита. Амортизацией кредита называется погашение долга по кредиту в течение определенного периода времени. (Следует отличать различные значения слова «амортизация», например, «амортизация кредита» и «амортизация основных фондов»).Часто план погашения кредита предусматривает возврат долга равными величинами через равные промежутки времени. Т.е. платежи по погашению кредита являются аннуитетами. Каждый такой платеж представляет собой сумму амортизации (погашения) основного долга и процентного платежа на остаток долга.

Легко понять, что понижающиеся процентные платежи из–за убывающего остатка долга должны компенсироваться возрастающей амортизацией основного долга, чтобы сумма оставалась постоянной. Величина этой суммы в расчете на единицу долга определяется формулой:

6 функций денег

Стандартные функции сложного процента

Применение стандартных функций сложного процента даёт возможность рассчитать величину любого из элементов, характеризующих распределенные во времени денежные потоки — стоимость, платеж, время, ставку, — при условии, что другие элементы известны.

Как правило, речь идет о 6 функциях сложного процента:

  • накопленная сумма единицы(её будущая стоимость),
  • накопление единицы за период,
  • взнос в формирование фонда возмещения,
  • реверсия (текущая стоимость единицы),
  • текущая стоимость обычного аннуитета,
  • взнос на амортизацию единицы

Поскольку эти функции применяют весьма широко и часто, разработаны стандартные таблицы, которые включают заранее рассчитанные факторы сложного процента. В данном контексте фактором называется одно из двух или более чисел, которые, будучи перемноженными, дают заданный результат. Все эти факторы созданы с применением базовой формулы (1 + i)n, дающей описание накопленной суммы единицы, и по сути, представляют собой производные от этого фактора.

Будущая стоимость единицы.

Будущая стоимость единицы – функция, которая определяет ее накопленную сумму спустя n периодов, если ставка дохода на капитал равна i. Функция подразумевает, что доход на капитал, полученный за период, вместе с первоначальным капиталом формирует базу, с которой будет определяться доход на капитал в следующий период.

Её рассчитывают по формуле:

где FV — будущая стоимость;
PV — текущая стоимость;
i — ставка дохода;
n — срок накопления (число периодов);
FVF(i;n) = (1 + i)n — фактор будущей стоимости единицы (накопленной суммы).

С помощью этой функции можно вычислить будущее значение денежной суммы, опираясь на ее текущее значение, размер ставки дохода на капитал и длительность срок накопления.

В текущий момент стоимость земельного участка составляет 1000 долл., при уровне доходности 14%. Предполагается, что он будет продан через два года. При этом ни его характеристики, ни рыночные условия не изменятся. В данном случае будущая стоимость земельного участка станет равной 1300 долл.:

или, что одно и то же

Накопление единицы за период.

Накопление за период – функция, которая определяет будущую стоимость обычного аннуитета (то есть серии равновеликих периодических платежей и поступлений PMT) на протяжении n периодов при размере ставки дохода на капитал i.
Обычный аннуитет – это серия равновеликих периодических платежей и поступлений, причём первый из них производится в конце следующего, после текущего, периода. Если платежи производятся авансом, (в начале каждого периода), речь идёт об авансовом аннуитете.

Будущую стоимость обычного аннуитета рассчитывают по формуле:

где FVA — будущая стоимость обычного аннуитета
PMT – величина одного из серии равновеликих периодических платежей или поступлений
i — ставка дохода;
n — число периодов;

— фактор будущей стоимости обычного аннуитета.

Нужно рассчитать будущую стоимость земельного участка, приобретенного при условии отсрочки платежа на полгода и компенсации 12% годовых. Платежи вносятся в конце каждого месяца — равными суммами по 1000 долл. В таком случае будущая стоимость земельного участка окажется равной 6152 долл.:

или, что то же самое

Взнос на формирование фонда возмещения.

Взносы на формирование фонда возмещения — функция, которой определяется величина платежей для обычного аннуитета, чья будущая стоимость через n периодов, при величине ставки i, равна 1.

Иначе говоря, с помощью функции взноса на формирование фонда возмещения можно определить размер равновеликого периодического платежа (регулярного дохода), нужного для накопления до конца установленного периода определенной суммы, с учетом накопленных процентов, при некоторой ставке дохода.

Расчет величины равновеликого периодического платежа осуществляется по формуле:

где PMT – величина равновеликого периодического платежа;
FV — будущая стоимость обычного аннуитета
i — ставка дохода;
n — число периодов;

— фактор фонда возмещения
SFF (i;n) (фактор фонда возмещения) является обратной величиной фактора будущей стоимости обычного аннуитета:

Нужно рассчитать величину ежегодных накоплений с целью равноценной замены существующего здания, которое приносит доход в 14%, с условием, что к окончанию периода экономической жизни (8 лет) затраты на замену здания составят 10000 долл. В данном случае величина ежегодных отчислений составит 755,70 долл.:

Текущая стоимость единицы (реверсии).

Текущая стоимость единицы (реверсии) – функция, которая определяет текущую стоимость будущей единицы, которую можно получить по истечении n периодов при заданной ставке дохода i. Данная функция позволяет осуществить оценку текущей стоимости дохода, который может быть получен от реализации объекта в конце периода при данной ставке дисконта.

Текущую стоимость единицы рассчитывают по формуле:

где PV — текущая стоимость;
FV — будущая стоимость;
i — ставка дохода (дисконта);
n — срок накопления (число периодов);

— фактор текущей стоимости единицы (реверсии).

В математическом смысле текущая стоимость единицы – это обратная величина функции ее будущей стоимости.

Требуется вычислить текущую стоимость земельного участка, который в конце года будет продан по цене 1000 долл. При ставке дисконта 10% в год текущая стоимость участка будет равной 909,09 долл.

Текущая стоимость обычного аннуитета.

Текущая стоимость обычного аннуитета – функция, которая определяет текущую стоимость серии будущих равновеликих периодических платежей (поступлений) PMT на протяжении n периодов при ставке дисконта i. Вычисление осуществляют по формуле:

где PVA — текущая стоимость обычного аннуитета
PMT — величина одного из серии равновеликих периодических платежей (поступлений)
i — ставка дохода (дисконта);
n — число периодов

— фактор текущей стоимости обычного аннуитета.

Текущая стоимость обычного аннуитета может быть определена как сумма текущих стоимостей всех платежей:

Нужно определить текущую стоимость платежей по аренде, при условии, что земельный участок был сдан на три года, за ежегодную арендную плату 100 долл. Ставка дисконта равна 12%. Тогда текущая стоимость платежей составит 240,18 долл.:

Взнос на амортизацию единицы.

Взнос на амортизацию единицы – функция, при помощи которой определяют величину регулярного платежа (поступления), обеспечивающего доход на капитал и его возврат при ставке дисконта i за n периодов. Взнос на амортизацию единицы можно рассчитать по формуле:

где PMT — величина платежа для обычного аннуитета;
PV — текущая стоимость единицы,
i — ставка дисконта (дохода);
n — срок накопления (число периодов);

— фактор взноса на амортизацию единицы.

Эта функция, равно как и функция взноса на формирование фонда возмещения, даёт возможность определения платежа РМТ. Но в отличие от функции взноса на формирование фонда возмещения, связанной с платежом с целью накопления заданной суммы FV, функция взноса на амортизацию единицы имеет отношение к платежу, позволяющему вернуть заданную на текущий момент сумму PV. При этом платеж включает две составляющие: первая обеспечивает доход по заданной ставке i, вторая обеспечивает возврат капитала по норме возврата SFF(i; n) за n периодов.

Функция взноса на амортизацию единицы используется при определении регулярных равновеликих (аннуитетных) платежей в счет погашения кредита, если он выдан на некоторый период по заданной ставке по кредиту. При этом каждый платеж включает в себя и выплаты основной суммы долга, и начисленных процентов. Сами платежи при этом равновеликие, и от платежа к платежу соотношение доходной и возвратной составляющих меняется (уменьшается часть, с которой идёт выплата процентов, и увеличивается та часть, которая идёт на возврат принципала, то есть основной суммы кредита. То есть процент начисляется на невыплаченную сумму принципала и процентная ставка по кредиту, по мере его погашения, начисляется на меньшую сумму. Функция взноса на амортизацию единицы при этом обратна функции текущей стоимости обычного аннуитета.

Нужно рассчитать величину ежегодного дохода, который приходится на здание, которое будет эксплуатироваться в течение 5 лет, если его текущая стоимость равна 10000 долл., а ставка дисконта — 15%. При таких условиях размер ежегодного дохода составляет 2983,16 долл.:

или, что одно и то же

Используя взаимосвязь факторов шести функций сложного процента, можно предложить представить логику их построения и экономический смысл в табличной форме.

Взаимосвязь и экономический смысл стандартных функций сложного процента

Резюме

В оценке недвижимости важную роль играет теория стоимости денег во времени. С ее помощью объясняется такой значимый для оценки процесс, как дисконтирование, отражающий взаимосвязь между понятиями текущая стоимость, будущая стоимость, регулярный доход, время, ставка дохода.

Данная взаимосвязь реализуется на основе использования 6 функций сложного процента, позволяющих определить искомую величину на основе умножения известной величины на соответствующий фактор, значение которого может быть вычислено или взято из таблиц 6 функций сложного процента. Это существенно облегчает выполняемые при оценке многочисленные расчеты.

Шесть функций денежной единицы

Суть оценки стоимости приносящего прибыль проекта состоит в том, что определяется текущая стоимость прибыли, которая будет получена в прогнозируемом периоде. Гривна, полученная завтра, стоит меньше, чем гривна полученная сегодня. Это обусловлено тем, что деньги со временем приносят доход; а во-вторых — инфляционные процессы обесценивают деньги. В связи с этим рассмотрим шесть функций денежной единицы, которые отражают текущую стоимость денег.

Первая (прямая) функция. Накопление суммы денежной единицы: будущая стоимость денежной единицы.

При расчете будущей стоимости денежной единицы используется обычная формула сложного процента, которая позволяет рассчитывать и учитывать процент на вложенный процент:

, где

– депозитная сумма после t периодов, если вложен 1 долл.; 1 – один доллар; i – периодическая ставка процента; t – число периодов.

Существую специальные таблицы шести функций денежной единицы, содержащие предварительно рассчитанные элементы (отдельные множители) сложного процента, но можно рассчитывать их и самим.

На рис. 9.1 представлена диаграмма возрастания во времени текущей стоимости, положенной на депозит, по сложному проценту.

Данные о накопленной сумме в 1 доллар по сложному проценту при ставке 10% и ежегодном накоплении.

Накопление денежных средств может происходить более часто, чем год: ежедневно. Ежемесячно, ежеквартально или каждое полугодие. При более частом накоплении денежных средств эффективная ставка снижается. Расчет производится по основной формуле сложного процента с определенной ее корректировкой: число лет (t), на протяжении которого происходит накопление, умножается на частоту накопления в течение года, а номинальная годовая ставка процента делится на частоту накопления.

Вторая (обратная) функция сложного процента: текущая стоимость денежной единицы.

Текущая стоимость денежной единицы (стоимость реверсии, V) – это величина, обратная накопленной сумме единицы:

Текущая стоимость денежной единицы – это текущая стоимость одного доллара, которая будет получена в будущем. Диаграмма текущей стоимости денежной единицы показана на рис. 9.2.

Коэффициент текущей стоимости денежной единицы используется для оценки текущей стоимости известного (или прогнозируемого) единовременного поступления денежных средств с учетом заданного процента (с учетом ставки дисконта).

Допустим, инвестору необходимо определить, сколько нужно заплатить сегодня за оцениваемое предприятие, чтобы получить от него доход в 10% годовых, а через 2 года его продать, например за 10 млн. долл. Если инвестор собирается получить 10% на вложенный капитал, то сумма, которую он может предложить за предприятие сегодня: млн. долл.

Механизм определения коэффициента текущей стоимости денежной единицы при годовой ставке дисконта 10%.

Третья (прямая) функция сложного процента: текущая стоимость единичного аннуитета.

Аннуитет (обычный) – серия равновеликих платежей, первый из которых осуществляется через один период, начиная с настоящего момента, то есть платеж производится в конце рассматриваемых периодов.

На рис.9.3 представлена диаграмма текущей стоимости обычного аннуитета, то есть текущая стоимость серии равновеликих платежей.

Такая ситуация может возникнуть, если собственник сдает активы предприятия в аренду и хочет получать ежегодную арендную плату в 100 тыс. долл. в течение следующих четырех лет. При 10% ставке дисконта текущая стоимость первого арендного платежа в 100 тыс. долл. через год равна 90,91 тыс. долл. (100 тыс. долл. * 0,9091=90, 91 тыс. долл.), второго арендного платежа – 82,64 тыс. долл. (100 тыс. долл. * 0,8264=82, 64 тыс. долл.), третьего арендного платежа – 75,13 тыс. долл., четвертого — 63,30 тыс. долл. Таким образом, текущая стоимость арендных платежей в 100 тыс. долл. в течение 4 последующих лет при ставке 10% составляет 316,98 тыс. долл.

Текущая стоимость аннуитета (at) может быть рассчитана как сумма текущих стоимостей 1 долл. за определенный период времени:

Для построения таблицы обычного аннуитета необходимо сложить данные текущей стоимости единицы за соответствующее число лет.

Если периодические платежи поступают чаще, чем один раз в год, номинальную (годовую) ставку процента необходимо разделить на число периодов в году. Общее число периодов равно числу лет, умноженному на число периодов в году.

Если собственник договаривается с арендатором о том, что он (арендатор) будет осуществлять равномерные авансовые платежи по следующей схеме: первый платеж немедленно после подписания контракта, а последующие равные платежи через определенный период, то такие платежи называются авансовым аннуитетом.

Четвертая (обратная) функция сложного процента: взнос на амортизацию денежной единицы.

Взнос на амортизацию денежной единицы – это регулярный периодический платеж в погашение кредита, приносящего процентный доход. Это величина, обратная текущей стоимости аннуитета.

Амортизация в данном случае – это погашение (возмещение, ликвидация) долга в течение определенного времени. Взнос на амортизацию кредита математически определяется как отношение одного платежа к первоначальной основной сумме кредита. Взнос на амортизацию единицы равен обязательному периодическому платежу по кредиту, включающему процент и выплату части основной суммы. Это позволяет погасить кредит и проценты по нему в течение установленного срока.

1 долл., ожидаемый к получению в конце каждого года на протяжении 4 лет, имеет при годовой ставке 10% текущую стоимость 3,1698. Это текущая стоимость аннуитета.

Величина взноса на амортизацию равна обратной величине текущей стоимости аннуитета, то есть взнос на амортизацию 1 долл. составляет величину, обратную 3,1698 долл.

Математическое отношение одного платежа к первоначальной основной сумме кредита составляет

Эта величина показывает размер периодического ежегодного платежа для погашения задолженности по кредиту 3,1698 долл. в течение 4 лет при ставке 10%.

Каждый взнос на амортизацию единицы включает процент и выплату части первоначальной основной суммы кредита. Соотношение этих составляющих изменяется с каждым платежом (рис. 9.4).

Рис.9.4 Взнос на амортизацию единицы

Для определения взноса на амортизацию денежной единицы используется следующая формула:

Пятая (прямая) функция сложного процента: накопление (рост) единицы за период — будущая стоимость аннуитета.

Фактор накопления единицы позволяет ответить на вопрос о том, какой по истечению всего срока будет стоимость серии равных взносов, депонированных в конце каждого из периодических интервалов.

Например, предприниматель хочет накопить определенную сумму для покупки нового станка. Станок стоит 4,641 долл. Он в конце каждого года откладывает на депозит по 1 долл., который приносит 105-ный годовой доход. К концу четвертого года он скапливает необходимую сумму (4,641 долл.) и покупает станок.

Расчет накопления единицы за период S(t,i) осуществляется по следующей формуле:

Рис.5 Накопление единицы за период

Шестая (обратная) функция сложного процента: фактор фонда возмещения.

Фактор фонда возмещения показывает сумму, которую нужно депонировать в конце каждого периода (периодический депозит), чтобы через заданное число периодов остаток на счете составил 1 долл. При этом учитывается процент, получаемый по депозитам.

Например, предпринимателю необходимо за четыре года скопить 4,641 долл. для покупки станка. Какие суммы денег ему необходимо откладывать каждый год при 10% годовых, чтобы через 4 года купить этот станок?

Ответ: ежегодный вклад должен составить 1 долл. (0,215471*4,641=1 долл.).

Фактор фонда возмещения – это величина обратная фактору накопления денежной единицы за период:

Рис.5 Фактор фонда возмещения

Взаимосвязи между функциями сложного процента.

Все шесть функций сложного процента строятся с использованием общей базовой формулы сложного процента (1+i) t , характеризующей накопленную сумму единицы. Все пять функций сложного процента являются производными от первой (прямой) функции сложного процента – накопленной функции единицы (будущая стоимость единицы). Каждая из функций предполагает, что деньги положенные на депозит, до тех пор, пока находятся на нем, приносят процент. В основу каждого фактора положен эффект сложного процента, при котором процент переводится в основную сумму (табл.9.2).

Таблица 9.2 Взаимосвязь между функциями сложного процента

Шесть функций денежной единицы

Для определения стоимости инвестиционного проекта или собственности необходимо определить текущую стоимость денег, которые будут получены через некоторое время в будущем. В условиях инфляции деньги изменяют свою стоимость с течением времени. Основными операциями, позволяющими сопоставить разновременные деньги являются операции накопления (наращивания) и дисконтирования.

Накопление – это процесс приведения текущей стоимости денег к их будущей стоимости при условии, что вложенная сумма будет находиться на счету в течение определенного времени, принося периодически накапливаемый процент.

Дисконтирование – процесс приведения денежных поступлений от инвестиций к их текущей стоимости.

1 функция. Определим будущую стоимость денежной единицы (накопленная сумма денежных единиц)

FV — будущая стоимость денежной единицы,

PV – текущая стоимость денежной единицы,

i – ставка дохода,

n – число периодов накопления в годах.

Задача. Определить какая сумма будет накоплена на счете к концу 3 года, если сегодня положить на счет под 10 % годовых 10 тыс. руб.

2 функция. Текущая стоимость денежной единицы (текущая стоимость реверсии перепродажи)

Задача. Сколько нужно вложить сегодня в инвестиционный проект, чтобы к концу 5 года получить 8 тыс.руб. Ставка дохода 10%.

3 функция. Определение текущей стоимости аннуитета.

Аннуитет – это серия равновеликих платежей (поступлений), отстоящих друг от друга на один и тот же промежуток времени.

Выделяют обычный и авансовый аннуитет. Если платежи осуществляют в конце каждого периода, то аннуитет обычный; если вначале – авансовый.

Формула текущей стоимости обычного аннуитета:

PMT – равновеликие периодические платежи.

Задача. Договор аренды дачи составлен на 1 год. Платежи осуществляются ежемесячно по 1 тыс.руб. Определить текущую стоимость арендных платежей при 12% ставке дисконтирования. n = 12 (число периодов – месяцев).

4 функция. Накопление денежной единицы за период. В результате использования данной функции определяется будущая стоимость серии равновеликих периодических платежей или поступлений.

Задача. Определить сумму, которая будет накоплена на счете, приносящем 12% годовых, к концу 5 года, если ежегодно откладывать на счет 10 тыс.руб.

5 функция. Взнос на амортизацию денежной единицы.

Данная функция является обратной величиной текущей стоимости обычного аннуитета.

Амортизация – это процесс, определяемый данной функцией, и включает проценты по кредиту и оплату основной суммы долга.

Задача. Определить, какими должны быть ежегодные платежи, чтобы к концу 7 года погасить кредит 100 000 руб., выданный под 15% годовых.

Аннуитет может быть как поступлением (входящим денежным потоком), так и платежом (исходящим денежным потоком), по отношению к инвестору. Поэтому данная функция может быть использована в случае расчета величины равновеликого взноса на погашение кредита при известном числе взносов и заданной процентной ставке. Такой кредит называется самоамортизирующийся кредит.

6 функция. Рассматривает фактор фонда размещения и является обратной функции накопления единицы за период.

Для определения величины платежа используется следующая формула:

Задача. Определить, какими должны быть платежи, чтобы к концу 5 года иметь на счете при ставке 12% годовых 100 000 руб.

studopedia.org — Студопедия.Орг — 2014-2020 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.003 с) .

Ссылка на основную публикацию
Adblock
detector